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non-universality of the holomorphic gauge couplings at the singularity, induced by a 1-loop
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1 Introduction and summary of results

String theory is attractive as a candidate fundamental theory of physics because it has

outstandingly soft ultraviolet behaviour. The tower of excited string states tames the

divergences that are present in ordinary scattering amplitudes in both quantum field theory

and general relativity, returning finite and well-defined answers. Supersymmetry also plays
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a central role in this process, as although supersymmetry may be broken at long distances,

at sufficiently short distances strings see maximal supersymmetry.

Heuristically, field theory divergences are expected to ‘turn off’ somewhere around the

string scale as the string-like nature of particles becomes apparent. However it is of great

interest to study precisely how divergences are cancelled and the structure of the finite terms

that are left over. These terms come from massive string/KK modes and provide a remnant

contribution of high-scale physics to low-scale observables. Understanding such threshold

corrections is important both from a formal point of view and also when attempting to relate

the parameters present in string constructions to the observables of low energy physics.

One of the most important arenas for the study of threshold corrections is the evolution

of running gauge couplings. The apparent unification of the gauge couplings at MGUT ∼
1016GeV is suggestive of an underlying GUT symmetry broken near the scale MGUT.

Assuming this is not an accident, it is important to understand the significance of MGUT

and how it relates to the compactification parameters. In the perturbative heterotic string,

the natural unification scale is the string scale, a factor of around 30 larger than the GUT

scale. The original study of threshold corrections was motivated by the possibility that the

inclusion of heavy string or Kaluza-Klein modes could remove the discrepancy between the

string and unification scales.

More recent model building has occurred in the context of type II string theories (see [1]

for a review). One particularly interesting class of models are local or bottom-up construc-

tions. The gauge group and interactions of the Standard Model fields are determined

almost entirely by purely local geometry and does not depend on the global properties

of the Calabi-Yau. By decoupling the complicated topology of the bulk, local models re-

duce the geometrical complexity involved in model building. The canonical example of

local models is the case of branes at singularities [2], where only the singular geometry is

relevant for determining the gauge groups and Yukawa couplings.

The enhanced understanding of moduli stabilisation over the last few years also focuses

attention on local models. Moduli stabilisation is best understood in the setting of type IIB

flux compactifications. The combination of both full moduli stabilisation and dynamical

low scale supersymmetry breaking can be obtained in the LARGE volume scenario [3, 4],

which stabilises the bulk at an exponentially large size while keeping blow-up cycles small.

In this scenario the observed size of the various Standard Model gauge couplings implies the

Standard Model must be realised on a small blow-up cycle, and thus must be represented

by a local model.

The above combination of reasons motivates the detailed study of gauge threshold

corrections for local models. While the full form of threshold corrections requires a CFT

computation, the structure is significantly constrained by effective field theory and in par-

ticular by the Kaplunovsky-Louis formula [5, 6]:

g−2
a (Φ, Φ̄, µ) = Re(fa(Φ)) +

(
∑

r nrTa(r) − 3Ta(G))

8π2
ln

(

MP

µ

)

+
T (G)

8π2
ln g−2

a (Φ, Φ̄, µ)

+
(
∑

r nrTa(r) − T (G))

16π2
K̂(Φ, Φ̄) −

∑

r

Ta(r)

8π2
ln det Zr(Φ, Φ̄, µ). (1.1)
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Here g−2
a (Φ, Φ̄, µ) is the physical coupling, fa(Φ) the holomorphic coupling, µ the energy

scale, and Φ light uncharged moduli superfields. K̂ is the moduli Kähler potential and

Zr are the matter field kinetic terms. Equation (1.1) simplifies considerably for local

models. The requirement that physical Yukawa couplings Ŷαβγ =
eK/2Yαβγ√

ZαZβZγ
do not depend

on the bulk volume strongly constrains the dependence of the matter metrics Zα on V. As

K = −2 lnV and Yαβγ is independent of V, this implies Zα = 1/V2/3.

For local models equation (1.1) therefore becomes

g−2
a (µ) − T (G)

8π2
ln g−2

a (µ) = Re(fa(Φ)) + βa ln

(

(RMs)
2

µ2

)

, (1.2)

where R is the bulk radius R = V1/6. For universal fa(Φ) this implies that the unification

scale is given by MX = RMs ≫ Ms for R ≫ 1. This is quite surprising as the scale RMs

depends on the bulk whereas naively local models are insensitive to the bulk. However

the interpretation of the field theory formula (1.1) can be subtle due to field redefinitions

and chiral/linear multiplet dualities. Eq. (1.2) therefore motivates a detailed CFT study

of the threshold corrections in order to understand the physics of this apparent unification

at MX ≫ Ms.

This study was initiated in [7] where threshold corrections were studied for branes at

orbifold singularities. In [7] systems of D3 branes at orbifold singularities were found to

exhibit unification at RMs, whereas a D3/D7 system gave unification at Ms in apparent

disagreement with (1.2). In this paper we continue this analysis, focusing our attention on

orientifolded singularities. We shall resolve the discrepancy encountered in [7] and obtain a

precise understanding of when running starts at Ms, when running starts at MX , and when

a combination of the two applies. Full agreement with (1.1) is found after incorporating

the effects of one-loop redefinitions of the moduli superfields. In [8] we will further apply

this understanding of threshold corrections to local IIB/F-theory GUTs [9, 10] which exist

in the geometric regime where the CFT computations cannot be performed.

As the actual calculations are rather technical, in the remainder of this introduction

we shall summarise the methodology and results of this paper.

Summary of results. For models at orbifold/orientifold singularities, the gauge groups

comes from fractional branes, whose geometric interpretation is as magnetised branes or

antibranes wrapping collapsed cycles. The number and type of the possible fractional

branes is determined by the orbifold. Each fractional brane corresponds to a node of the

quiver and the gauge coupling on each brane is

fa = S + sa
kMk, (1.3)

where S = 1
gs

+ ic0 is the axio-dilaton and Mk corresponds to the twisted blow-up moduli.1

The sak encode the charges of each fractional brane under the RR fields induced by the

1For some singularities the different nodes can have non-universal couplings to the dilaton. In such cases

the use of ‘unification’ in this paper would refer to the gauge couplings having the ratios given by their

dilaton coupling.
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Chern-Simons term in the action. The orientifold also introduces fractional O-planes which

are likewise wrapped on the collapsing cycles and contribute to the RR charges along the

collapsed cycles. An orientifolded singularity imposes relationships between the different

fractional branes and projects out some of the twisted moduli from the orbifold.

Consistency of the theory requires cancellation of all RR tadpoles. The tadpoles in

local models come in several kinds related to the geometry of the singularity. First, there

are purely local tadpoles. These correspond to 2/4-cycles where both the cycle and its dual

cycle are defined in the local geometry. These local cycles are the unique supersymmetric

cycles within this homology class. In orbifold parlance, these are fully twisted N = 1

sectors. Heuristically speaking, a tapole along such a cycle has nowhere to go: it cannot

escape to infinity and must be cancelled locally. Cancellation of N = 1 tadpoles corresponds

to cancellation of gauge anomalies in the effective field theory.

There are also global tadpoles. These corresponds to RR charges which are sourced

locally but can be cancelled globally. Geometrically, these correspond to cycles where a 2-

or 4-cycle can be defined locally, but globally may either be trivial or there may exist other

calibrated cycles in the same homology class. Examples of these are given by the del Pezzo

singularities: dPn has 1 4-cycle and (n + 1) 2-cycles, of which up to n of the 2-cycles may

be globally trivial. In orbifold parlance, these represent partially twisted N = 2 sectors,

and so (for example) the ∆27 orbifold (which is a limit of the dP8 singularity) has 8 N = 2

sectors. Such tadpoles need not be cancelled locally and do not constrain the allowed

numbers of branes. Finally, there is also the untwisted N = 4 sector, associated to the

dilaton tadpole and corresponding to the total number of branes at the singularity.

There exist various fractional brane configurations cancelling N = 1 tadpoles. The

choice of configuration determines the gauge groups and massless spectrum and thus the

IR beta functions. The spectrum also contains heavy string and KK modes, loops of

which give rise to threshold corrections. The threshold corrections ∆a(M,M̄ ) are moduli-

dependent and can be defined by

1

g2
a(µ)

=
1

g2
a

∣

∣

∣

∣

0

+ βa ln

(

M2
s

µ2

)

+ ∆a

(

M,M̄
)

. (1.4)

In this notation, threshold corrections represent the difference between the actual low-

energy couplings and those obtained by field theory running starting from the string scale.

Threshold corrections are computed via an open string one-loop diagram, which via open-

closed duality is equivalent to a closed string tree level diagram. This relationship implies

that ultraviolet finiteness of the threshold corrections is equivalent to infrared finiteness in

closed string channel, namely tadpole cancellation.

In this paper we use the background field approach to compute the threshold cor-

rections [11–14, 18]. This involves turning on a background spacetime magnetic field B

in a generator of the gauge group U(Na) for which we want to compute the threshold

corrections. The one-loop vacuum energy in the presence of this background field can be

expanded as

Λ = Λ0 +

(

B

4π2

)2

Λa
2 +

(

B

4π2

)4

Λa
4 + . . . . (1.5)
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The gauge threshold corrections can be extracted by analysis of the O(B2) term. In a con-

sistent theory the B2 term is finite for non-abelian background fields, and UV finiteness of

the O(B2) amplitudes provides another way to compute the tadpole and anomaly condi-

tions. Terms of O(B4) are generally ultraviolet divergent. These divergences correspond

in closed string channel to on-shell exchange of massless string states and the coefficients

of such terms can be used to extract the tree-level couplings of gauge groups to the local

twisted closed string moduli.

The term Λ2 can be written

Λ2 =
(

8π2
)

∫ 1/µ2

0

dt

t
∆a(t), (1.6)

where µ is the IR regulator. ∆a is a partition function of the schematic form STr(e−m2t).

In the infrared limit t → ∞, ∆a(t) → βa reproducing the field theory beta functions.

In the UV limit t → 0, for non-abelian groups ∆a(t) → 0 reflecting the finiteness of the

theory. Note for abelian groups ultraviolet divergences may occur in Λ2 via the Bµν ∧ F2

Green-Schwarz coupling.

The threshold corrections are encapsulated in the precise way ∆a(t) vanishes in the

regime t . 1. The actual computation of one-loop threshold computations therefore reduces

to computing the string partition function on the local orbifold/orientifold geometry. For

Zn orbifold/orientifold singularities, the partition function involves a projection

∆a(t) = STr

(

(1 + θ + θ2 + . . . + θN−1)

N
e−m2t

)

≡ 1

N

N−1
∑

k=0

∆(k)
a (t).

The sector ∆
(k)
a is called an N = 1 or N = 2 sector depending in whether θk fixes all 2-tori

(N = 1 sector) or leaves one torus unfixed (N = 2 sector). ∆
(0)
a (t) represents the only

N = 4 sector and vanishes consistent with the non-renormalisation properties of N = 4

supersymmetry. In general ∆
(k)
a is non-zero for both N = 1 and N = 2 sectors and in the

t → ∞ limit we have ∆
(k)
a → β

(k)
a with βa = 1

N

∑N−1
k=1 β

(k)
a .

The threshold corrections are encoded in the t → 0 behaviour of ∆
(k)
a . Let us state

the schematic form of these and then explain the results.

∆(k)
a =















β
(k)
a Θ

[

t − 1
M2

s

]

+ small, N = 1 sector

β
(k)
a Θ

[

t − 1
(RMs)2

]

+ small, N = 2 sector

0 N = 4 sector

, (1.7)

where Θ is the Heaviside theta function and R the bulk radius. The gauge coupling running

therefore takes the form

1

g2
(µ) =

1

g2

∣

∣

∣

∣

0

+ βa ln

(

M2
s

µ2

)

+ βN=2
a ln

(

M2
X

M2
s

)

. (1.8)

The form of (1.7) can be understood by reference to the above picture of cycles and

their geometries. In each sector, the gauge coupling runs up to a certain energy scale and
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is then cut off. The energy scale of the cutoff is determined by the mass of the string states

necessary to obtain tadpole cancellation. For purely local cycles (N = 1 sectors), tadpole

cancellation is local and occurs once string scale states are included. This leads to an ef-

fective cutoff on ∆
(k)
N=1 at t ∼ 1

M2
s
. For N = 2 sectors, tadpole cancellation does not occur

locally and instead requires knowledge of the bulk geometry. From an open string perspec-

tive this requires the inclusion of brane-brane winding modes that reach out into the bulk.

N = 2 supersymmetry prevents the (non-BPS) string-scale oscillator tower from contribut-

ing to gauge coupling running and field theory running is maintained until winding modes

comes in at a scale RMs, when ∆
(k)
N=2 is finally cut off. We also note that for branes at sin-

gularities there are no charged KK modes that can contribute to the threshold corrections.

The net effect is that N = 1 sectors give field theory running up to the string scale,

where they are cut off, while N = 2 sectors give field theory running up to the winding

string scale. N = 4 sectors give no contribution due to the effective maximal supersym-

metry that is present. This type of behaviour was observed in global type I constructions

already in [15].

Physics close to the cutoffs introduces small additional corrections, that is however

suppressed compared to the large R enhanced terms. Some discussions of these additional

corrections can be found in [16, 17].

For the case of D3 branes at orbifold singularities, tadpole cancellation required the

coefficient of all N = 1 sectors to vanish, and the β-functions arose entirely from the N = 2

sectors (even though the low-energy spectrum is chiral and N = 1 supersymmetric). In

this case all running is from the winding mode scale, straightforwardly consistent with the

Kaplunovsky-Louis formula. For the case of both orientifolded singularities and D3/D7

systems, both N = 1 and N = 2 sectors contribute to the β-functions. In general the

N = 1 contributions to the β functions are not universal and there is no apparent unification

scale. To reconcile this with the Kaplunovsky-Louis formula, recall the form of the tree

level holomorphic gauge coupling (1.3) which shows that the gauge coupling can receive

a non-universal correction from a vev for the Mk superfields 〈ReMk〉 6= 0. The string

calculation is performed in the orbifold limit which we denote by the string real twisted

mode 〈mk〉 = 0. At tree level the two fields coincide with ReMk = mk. However at 1-loop

the relation is modified

Re(Mk) = mk − αk ln R2, (1.9)

where αk is some constant, such that at the orbifold point

sa
kReMk = −β(k)

a ln

(

M2
X

M2
s

)

. (1.10)

This exactly accounts for the discrepency between the string calculation (1.8) and the KL

formula (1.2).

This field redefinition is familiar from heterotic and type I orbifolds [18, 19]. It arises

because Mk are components of a chiral multiplet while mk is the scalar component of

a linear multiplet. The dualisation procedure recieves a 1-loop correction (1.9) with the

correction proportional to the correction induced at 1-loop to the β functions. Consistency

– 6 –



J
H
E
P
0
9
(
2
0
0
9
)
0
1
9

with (1.2) requires that the couplings sa
k in (1.10) are proportional to β

(k)
a , a fact we

explicitly compute in section 4.

The redefinition (1.9) is related to the β-function contribution associated to the N = 1

twisted mode. Such contributions are present for both orientifold and D3/D7 singulari-

ties. For branes at orientifolded singularities, there are contributions to N = 1 sectors

from combining the Möbius and Annulus diagrams. For D3/D7 systems, the D3/D3 and

D3/D7 diagrams combine to give the N = 1 contributions. For branes at orbifold singu-

larities, there are only D3/D3 diagrams and so ∆N=1
a has to vanish in order to enforce UV

tadpole cancellation.

Once the one-loop redefinition (1.9) is carried out the resulting gauge couplings agree

with the Kaplunovsky-Louis formula. In this case the holomorphic gauge couplings fa(Φ),

which were universal at tree level due to the vanishing of Mk, become non-universal at

one loop. The apparent unification of physical couplings at RMs, which is present for

models of D3s at orbifold singularities, is not present for D3/D7 models or for D3s at

orientifolded singularities.

In summary, physical gauge couplings run from RMs if the β functions are sourced

only from N = 2 sectors and from Ms if β functions are sourced only from N = 1 sectors.

In the case that both N = 1 and N = 2 sectors contribute then N = 2 running starts at

RMs with a significant, generically non gauge universal, shift in the effective β-functions

at Ms as the N = 1 sectors add their contribution to running from the scale Ms.
2

The organisation of this paper is as follows. The paper studies branes at orientifolds of

the Z4, Z6 and Z
′

6 singularities. As far as we aware the field theory on such singularities has

not been explicitly constructed before and so in section 2 we first provide a CFT derivation

of the gauge groups and spectrum. We focus particularly on the Z4 case that will serve

as our main example throughout this paper. In section 3 we describe the computation of

threshold corrections and in section 4 we describe the matching to the effective field theory

structure. In section 5 we summarise results for the Z6 and Z
′

6 orientifolds. In appendix A

we study anomalous and non-anomalous U(1)s in local models and in particular the Green-

Schwarz mechanism within the local model and its global completion. In appendix B we

derive general expressions for the tadpole amplitudes. In appendix C we calculate general

expressions for the magnetised amplitudes. In appendix D we discuss in more detail the

dualisation procedure between chiral and linear multiplets and the 1-loop corrections this

receives. In appendix E we give some useful expressions and transformation properties

for the ϑ functions.

2 Orientifold constructions

We start by describing the orientifold constructions that will be used for our calculations.

The CFT construction of orientifolds is standard and more details can be found in [2, 22–24]

for example.

2It is not clear whether operational meaning can be applied to a gauge coupling at an energy scale

above Ms. An unambiguous statement is to instead say that the low-energy gauge couplings, which are

well-defined, behave as if they have been run down from a scale RMs.

– 7 –
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2.1 Orientifolds of orbifold singularities

We start with a local orbifold singularity C
3/ZN where the orbifold action is generated by

the element θ acting as θ : zi → exp (2πiθi) zi, i = 1, 2, 3, with components θi running over

the local complex co-ordinates of the internal manifold zi. The orbifold group is formed of

elements θk produced by k applications of θ. The generating orbifold element also has an

action on the Chan-Paton (CP) indices of the open strings,

γθ = diag
(

1n0 , α1n1 , . . . , α
N1nN

)

, (2.1)

where α denotes the N th root of unity and 1ni denotes the ni×ni unit matrix. The integers

ni correspond to the number of fractional branes on each node of the quiver.

The resulting gauge theory is an N = 1 supersymmetric
∏N

i U(ni) gauge theory and

the massless fermionic open string string spectrum is given by the CP elements that satisfy

the orbifold projection

λ = e2πi(
P

i θisi)γθλγ−1
θ ≡ e2πiθ·sγθλγ−1

θ . (2.2)

Here λ denotes the M × M (with M =
∑

i ni) CP matrix. The vector s denotes the spin

of the RR ground states and its elements take the values si = ±1/2. The GSO projection

requires the number of negative spins to be even.

The closed string twisted spectrum gives a single complex scalar field per element in

ZN . The twisted sectors are labelled according to the amount of supersymmetry preserved,

namely N = 4, N = 2 and N = 1 for the cases that three complex directions, one complex

direction and no complex directions are left fixed by the geometric orbifold twist. An im-

portant fact is that N = 1 closed string modes are restricted to lie on the singularity, while

N = 2 modes can propagate into the bulk along the complex direction that is left fixed.

We can orientifold the singularity by introducing an orientifold involution

Ω′ = ΩIR(−1)FL . (2.3)

Here Ω is world-sheet parity inversion. I is spatial inversion given by the rotation θ =

(1/2, 1/2, 1/2). R is a further spatial action whose geometric action must square to an

element of the orbifold group

R2 = θl , (2.4)

for some l. This ensures that the orientifold is indeed a good involution of the orbifolded

space. The action of the orientifold on the CP indices is

Ω′ : λ → γΩ′λT γ−1
Ω′ . (2.5)

Since Ω′ must square to an element of the orbifold group we require

γΩ′γ−T
Ω′ = ± (γθ)

l , (2.6)

for the same l as in (2.4). Note the + sign in (2.6) corresponds to what is usually termed

the SO projection (rather than the Sp), and we keep this sign choice for the rest of the

paper. We also generally denote (γθ)
k γΩ′ = γΩ′

k
giving

γΩ′
k
γ−T
Ω′

k
= + (γθ)

2k+l . (2.7)

– 8 –
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Together, the orbifold group and the orientifold action form the orientifold group

{

1, θ, θ2, . . . , θN−1,Ω′,Ω′θ, . . . ,Ω′θN−1
}

. (2.8)

The orientifold planes present in the construction are determined by the fixed point

set of the spatial involution IR quotiented by the action of the orbifold group. In IIB there

are two basic types of orientifold projection, O3/O7 and O5/O9. These have

O3/O7 : IR : J → J, IR : Ω → −Ω,

O5/O9 : IR : J → J, IR : Ω → Ω.

As we are interested in local models we will require IR to satisfy the O3/O7 conditions.

We will further require that on the non-compact orbifold C
3/Zn the only fixed point of IR

is the origin. This will ensure that only O3 planes are present.

Given the orientifold action, the resulting massless spectrum is a projection from the

orbifold spectrum which for the fermionic open string modes reads

λ = −e2πi(
P

i Risi)γΩ′λT γ−1
Ω′ . (2.9)

2.2 Tadpole amplitudes

The act of orientifolding introduces O-planes which source RR tadpoles. Consistency

requires the introduction of branes to cancel these tadpoles. For orientifolded singularities

the O-planes wrap the collapsed cycle and carry RR charge under the various cycles of the

singularity. Tadpoles for N = 1 fields must be cancelled locally and correspond to field

theory gauge anomalies. N = 2 tadpoles need not be cancelled locally since a net source

of a N = 2 closed string mode can be balanced by sinks in the bulk space. The tree-level

N = 1 closed string tadpoles can be calculated by studying the divergences of one-loop

open string amplitudes given by the annulus, Mobius strip, and Klein bottle (labelled A,

M and K respectively). The methods to compute these tadpoles and generate consistent

brane configurations are well known. Here we simply state results and leave the details

to appendix B. The amplitudes all diverge linearly3 with the closed string cylinder length

parameter l and in the open string UV limit l → ∞ read4

A(k)
N=1

UV−−−→
l′→∞

−
∫ ∞

l′

dl

4π2

1

4
Tr [γk] Tr

[

γ−1
k

]

3
∏

i=1

∣

∣

∣
2 sin

(

πθk
i

)∣

∣

∣
, (2.10)

M(k)
N=1

UV−−−→
l′→∞

∫ ∞

l′

dl

4π2

[

2Tr
[

γΩ′
k
γΩ′−T

k

]

3
∏

i=1

si

(

2 sin
(

πRk
i

))

]

, (2.11)

K(k)
0,N=1+K(k)

2,N=1
UV−−−→

l′→∞
−
∫ ∞

l′

dl

4π2
4





3
∏

i=1

∣

∣

∣

∣

∣

sin
(

πRk
i

)

cos
(

πRk
i

)

∣

∣

∣

∣

∣

+(−1)M
3
∏

i=1

(−1)δi

∣

∣

∣

∣

∣

sin
(

πRk
i

)

cos
(

πRk
i

)

∣

∣

∣

∣

∣

δi


 .

3The divergence is linear in l but this corresponds to a quadratic divergence in energy.
4Throughout the paper we often switch between the open string loop channel and the closed string tree

channel. By the UV limit we refer to the open string UV limit which is the closed string IR limit.
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where si = sgn
[

sin(2πRk
i )
]

and Rk
i = θk

i + Ri. The amplitude K(k)
2 corresponds to the

partition function for the closed string Z2 twisted sector and thus is only present for even

orientifolds. For this case

δi =

{

0 if θ
N/2
i mod 1 = 1/2

1 otherwise
. (2.12)

The contributions from other closed string twisted sectors vanish as they are exchanged by

the orientifold action.

The superscript k on the amplitudes and angles denotes the element in the orientifold

group, with rotation angles Rk coming from elements involving Ω′θk.5 The tadpole con-

straint is that the sum over all fully twisted elements θk and Rk corresponding to any

single closed string twisted mode should vanish. Partially twisted (N = 2) tadpoles are

not required to vanish in a local model. However in a fully global model such tadpoles

must vanish once summed over all global sectors.

2.3 The canonical example: Z4

We now develop our basic example, the orientifold of the Z4 orbifold singularity. This

model is used throughout the paper as the canonical example exhibiting the physics we

discuss. We study two further constructions based on Z6 and Z
′
6 singularities in section 5.

The Z4 orbifold action is generated by θ = (1/4, 1/4,−1/2). We take the orientifold

spatial action to be R = (1/8, 1/8,−1/4). The orientifold group is therefore
{

(0, 0, 0) ,

(

1

4
,
1

4
,−1

2

)

,

(

1

2
,
1

2
,−1

)

,

(

3

4
,
3

4
,−3

2

)

, (2.13)

ΩI

(

1

8
,
1

8
,−1

4

)

,ΩI

(

3

8
,
3

8
,−3

4

)

,ΩI

(

5

8
,
5

8
,−5

4

)

,ΩI

(

7

8
,
7

8
,−7

4

)}

.

It is easy to verify that IRΩ = −Ω as required for an O3/O7 projection. As all elements

involving Ω have fully twisted spatial parts there are no O7 planes and all O3 planes are

located at the origin. It is this property that makes the model purely local as there are no

branes or orientifold planes extending from the singularity into the bulk.

We take the orbifold generating element

γθ = diag(1n0 , α1n1 , α
21n2 , α

31n3) with α = eπi/2 , (2.14)

and impose n1 = n3. For the orientifold action we take

γΩ′ =











1n0 0 0 0

0 0 0 α3/21n3

0 0 αǫn2 0

0 α1/21n1 0 0











, (2.15)

5 The (−1)M factor in (2.11) is associated with the sign of the action of the orientifold on the NS-NS

ground state in the Z2 twisted sector:

ΩIR(−1)FL

˛

˛

˛

˛

−
1

2
,−

1

2

fl

⊗

˛

˛

˛

˛

−
1

2
,−

1

2

fl

NS−NS,Z2

= (−1)M

˛

˛

˛

˛

−
1

2
,−

1

2

fl

⊗

˛

˛

˛

˛

−
1

2
,−

1

2

fl

NS−NS,Z2

,

and for the orientifolds in this paper takes the value of M = 0 for the Z4 and Z
′
6 cases and M = 1 for the

Z6 case.
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Multiplicity Representation

SO(n0) SU(n1) Sp(n2)

2 n0 n̄1 1

2 1 n1 n2

1 n0 1 n2

1 1 An1 1

1 1 S̄n1 1

Table 1. Field content and representations for Z4 orientifold. The ni denote the fundamental

representation and S and A denote symmetric and anti-symmetric representations respectively.

with ǫ denoting the anti-symmetric matrix with unit off-diagonal entries. These matri-

ces satisfy the constraint (2.6) so that Ω′ has a well-defined Z2 action on the orbifold

Hilbert space.

Calculating the tadpoles using (2.10)–(2.11) leads to

Tr [γθ] + 4 = 0 . (2.16)

The tadpole constraints impose the condition

n2 = n0 + 4 . (2.17)

The massless fermionic spectrum of the theory can be calculated using (2.9) which

gives the matter content shown in table 1. The gauge group is

G = SO(n0) × U(n1) × Sp(n2) ≡ SO(n0) × U(n1) × Sp(n0 + 4) . (2.18)

The non-abelian anomalies of the theory are equivalent to the tadpole constraint (2.17).

We are also interested in the field theory β-functions for the gauge groups. After imposing

anomaly cancellation (2.17) these read

βSU(n1) =
1

16π2
(−2n1 + 2n0 + 4) , (2.19)

βSO(n0) =
1

16π2
(−2n0 + 2n1 + 10) , (2.20)

βSp(n2) =
1

16π2
(−2n0 + 2n1 − 18) . (2.21)

We will use this orientifold of the C3/Z4 singularity as the principal example for our study

of the physics of string threshold corrections to field theory running.

3 Threshold corrections: the string calculation

To calculate the string threshold corrections we use the background field method [11–

13, 18]. The calculation proceeds by turning on a background magnetic field in the non-

compact dimensions then calculating the resulting one-loop vacuum energy. We write the

background magnetic field as F a
23 = BQa where a denotes the gauge group, Qa is the
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generator inside the gauge group, the indices 23 denote spatial directions, and B is the

magnitude of the field. Recall that the one-loop vacuum energy, Λ, takes the form

Λ = Λ0 +

(

B

4π2

)2

Λa
2 +

(

B

4π2

)4

Λa
4 + . . . . (3.1)

The contribution Λ0 vanishes in a supersymmetric vacuum. The coefficient Λa
2 gives the

full one-loop threshold corrections6

1

g2
a

∣

∣

∣

∣

1−loop

=
1

g2
a

∣

∣

∣

∣

tree−level

+
Λa

2

8π2
. (3.2)

3.1 Magnetised amplitudes

In this section we are primarily concerned with calculating Λa
2 and extracting its IR and

UV behaviour. The contributing amplitudes to Λa
2 are Annulus and Mobius amplitudes

(since the torus and Klein bottle do not couple to the gauge field) so that

(

B

4π2

)2

Λa
2 = (Aa + Ma)|B2 . (3.3)

The full calculation is presented in appendix C, to which we refer for more details regarding

the expressions, and in this section we draw on the key results.

The fully twisted (N = 1) D3-D3 Annulus amplitude in the background of a magnetic

field is given by [7]

A(k)
N=1 = −

∫ ∞

0

dt

2t

1

(2π2t)

∑

α,β=0,1/2

ηαβ

2
Tr













(

γθk ⊗ γ−1
θk

) i(β1 + β2)

2π2

ϑ

[

α

β

]

(

iǫt
2

)

ϑ

[

1/2

1/2

]

(

iǫt
2

)













×
3
∏

i=1

(

−2 sin
(

πθk
i

))

ϑ

[

α

β + θk
i

]

ϑ

[

1/2

1/2 + θk
i

] , (3.4)

where we decompose the amplitude into its orbifold sectors

A =
1

N

N
∑

k=0

A(k) , (3.5)

and the subscript N = 1 denotes that this result apples to orbifold sectors that are fully

twisted. Here we denote the charges of the left and right ends of the string as q1 and q2

6Note that Λa
2 is sensitive to the Lagrangian terms F ∧ ⋆F and C2 ∧ F , but not F ∧ F . This is because

we have turned on the magnetic field along only two space-time directions. This is why it gives exactly the

gauge Coupling (up to a possible Green-Schwarz contribution which we discuss in section 4.).
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respectively, and write β1 = Bq1 and β2 = Bq2. Neutral strings have opposite charges on

their ends. We also define

ǫ =
1

π
(arctan β1 + arctan β2) . (3.6)

Similarly we also have the magnetised Mobius N = 1 amplitude

M(k)
N=1 = 2

∫ ∞

0

dt

2t

1

(2π2t)
× (3.7)

∑

α,β=0,1/2

ηαβ

2
Tr











i

2π2
βγΩ′

k
γ−T
Ω′

k

ϑ

[

α

β

]

(

iǫt
2

)

ϑ

[

1/2

1/2

]

(

iǫt
2

)











3
∏

i=1

(

−2 sin
(

πRk
i

))

ϑ

[

α

β + Rk
i

]

ϑ

[

1/2

1/2 + Rk
i

] .

As left and right ends of the string are identified there is only one charge for the string

denoted q with β = Bq and ǫ = 2
π arctan β. The angles are defined as

Rk
i = θk

i + Ri . (3.8)

We are interested in the IR and UV behaviour of the B2 terms in the amplitudes. This

calculation was performed in [7] for the Annulus, and the Mobius strip can be calculated

in the same way. The results are that the IR limit of the N = 1 B2 part of the amplitudes

is given by

A(k)
N=1

IR−−−−→
t′→∞

−
(

B

4π2

)2 ∫ ∞

t′

dt

2t
Tr

[

1

2

(

q2
1γk ⊗ γ−1

k + 2q1γk ⊗ γ−1
k q2 + γk ⊗ γ−1

k q2
2

)

]

×
3
∑

i=1

cos
(

πθk
i

)

sin
(

πθk
i

)

3
∏

i=1

(

−2 sin
(

πθk
i

))

.

M(k)
N=1

IR−−−−→
t′→∞

−
(

B

4π2

)2∫ ∞

t′

dt

2t
Tr
[

−2q2γΩ′
k
γ−T
Ω′

k

]

3
∑

i=1

cos
(

πRk
i

)

sin
(

πRk
i

)

3
∏

i=1

(

−2 sin
(

πRk
i

))

. (3.9)

We can also extract the UV limit by going to the dual closed string channel with cylinder
length parameter l = 1/t for the Annulus and l = 1/4t for the Mobius, which gives

A(k)
N=1

UV−−−−→
l′→∞

−
(

B

4π2

)2∫ ∞

l′
dl Tr

[

1

2

(

q2
1γk ⊗ γ−1

k +2q1γk ⊗ γ−1
k q2+γk ⊗ γ−1

k q2
2

)

] 3
∏

i=1

∣

∣2 sinπθk
i

∣

∣ ,

M(k)
N=1

UV−−−−→
l′→∞

−
(

B

4π2

)2 ∫ ∞

l′
dl Tr

[

4q2γΩ′

k
γ−T
Ω′

k

]

3
∏

i=1

si

(

−2 sin
(

πRk
i

))

. (3.10)

The N = 4 untwisted sectors do not contribute to the B2 terms due to supersymmetry.
There are also N = 2 contributions and these take the exact form

A(k)
N=2 =

(

B

4π2

)2∫ ∞

0

dt

2t
Tr
[(

q2
1γk⊗γ−1

k +2q1γk⊗γ−1
k q2+γk⊗γ−1

k q2
2

)]

cos
(

πθk
3

)

2
∏

i=1

(

2 sin
(

πθk
i

))

,

M(k)
N=2 =

(

B

4π2

)2 ∫ ∞

0

dt

2t
Tr
[

−2q2γΩ′

k
γ−T
Ω′

k

]

cos
(

πRk
3

)

2
∏

i=1

(

2 sin
(

πRk
i

))

, (3.11)
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where the product is over the two twisted angles and and θ3 (and R3) denote the un-

twisted direction. These expressions are exact due to the N = 2 structure. With N = 2

supersymmetry only BPS multiplets can renormalise the gauge couplings and the string

oscillator tower is all non-BPS. As a result in a purely local computation the only non-zero

contribution comes from the zero modes.

Evaluated in the IR limit t → ∞ the magnetised B2 amplitudes must reproduce the

field theory β-functions. Evaluated in the UV limit t → 0 the amplitudes give the threshold

corrections to the gauge couplings. As discussed in the introduction the key feature of

the N = 2 sector is that, since the expressions are exact, the running is with the same

coefficient in the IR and the UV. Evaluated in a purely local model, such N = 2 sectors give

logarithmic ultraviolet divergences,
∫

dt
t ∆N=2. This ultraviolet divergence is associated

with a tadpole for partially twisted field. In a global model these divergences are cutoff as

global tadpole cancellation occurs. From the closed string channel, this corresponds to the

existence of new brane/O-plane sectors located in the bulk which also act as sources for

the partially twisted field and cancel the tadpole sourced in the local model.

From the open string viewpoint the incorporation of these sectors corresponds to the

inclusion of winding modes from the singularity to the distant bulk branes/O-planes. Such

modes are charged and BPS and contribute to the threshold corrections, cutting off the

β-function running from the N = 2 sector. The details of the cutoff depend on the precise

and model-dependent location of the bulk branes, but what is model-independent is that

the winding modes act as an effective ultraviolet cutoff on the N = 2 sector, cutting off

the running at a mass scale MX = RMs.

For the N = 1 sectors there is no such decoupling. In the IR the N = 1 sector combines

with the N = 2 contributions to give the field theory β functions. In the UV the string

oscillator tower enters giving a non-vanishing contribution. For non-abelian generators the

threshold corrections vanish in the far UV as closed string tadpole cancellation is enforced.

For U(1) generators the threshold corrections can diverge due to an on-shell exchange of

a N = 1 twisted RR mode via a Green-Schwarz coupling C2 ∧ TrF . The abelian case is

discussed in detail in appendix A but will not feature in the main text.

Similar to the way winding modes give an effective cutoff at MX = RMs for N = 2

sectors, the oscillator modes give an effective cutoff at Ms for N = 1 sectors. As N = 1

sectors are purely local tadpole cancellation occurs once the open string oscillators are

included. As t ≪ 1 gives l ∼ 1/t ≫ 1, in this limit all higher closed string modes are

exponentially decoupled and the amplitude reduces to the (vanishing) IR closed string

tadpole. Modulo small corrections that do not depend on the overall volume, the effective

cutoff for the N = 1 sectors is therefore at t = 1/M2
s .

The general amplitude therefore looks like (1.8) which we recall here

1

g2
(µ) =

1

g2

∣

∣

∣

∣

0

+ βa ln

(

M2
s

µ2

)

+ βN=2
a ln

(

M2
X

M2
s

)

. (3.12)

As this involves different running between MX and Ms and Ms and µ depending on the

relative size of N = 1 and N = 2 contributions to the beta function, in general this appears
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to differ with the Kaplunovsky-Louis formula (1.1) which only contains field theory running

from the winding scale MX .

In the next sections we shall study this issue in detail for the C
3/Z4 orientifold, and

see how the discrepancy can be resolved.

3.2 The Z4 case

We now specialise the above formulae to the case of the Z4 orientifold. We begin by turn-

ing on a background field within the SU(n1) gauge group. Note that since the orientifold

identifies SU(n1) and SU(n3) we must turn on the background field for both. The normal-

isation is fixed by the canonical gauge field normalisation Trq2 = 1
2 . The charge matrices

are then given by

q = q1 = −q2 = diag
(

0n0 , QSU(n1),0n2 , QSU(n1)

)

, (3.13)

QSU(n1) =
1√
8
diag (1,−1, 0, . . . , 0) . (3.14)

Evaluating the amplitudes from section 3.1, summing over the N = 1 and N = 2

sectors separately we find explicitly

ASU(n1)
N=1 =

1

4

∑

k=1,3

A(k)
N=1 = 0 ,

MSU(n1)
N=1 =

1

4

∑

k=1,2,3,4

M(k)
N=1 = 0 , (3.15)

ASU(n1)
N=2 =

1

4
A(2)

N=2 = − (2n1 − 2n2 − 4)

(

B

4π2

)2 ∫ ∞

0

dt

2t
,

MSU(n1)
N=2 ≡ 0 . (3.16)

We can extract the βSU(n1) function by imposing IR and UV cutoffs on the N = 2 integral

set by the probe energy scale 1/µ2 and the winding modes scale MX = RMs respectively.

Then using (3.3) we get

Λ
SU(n1)
2

8π2
= − 1

8π2
(2n1 − 2n2 − 4)

∫ 1
µ2

1

M2
X

dt

2t

= βSU(n1)ln

(

M2
X

µ2

)

. (3.17)

which exactly matches the expected field theory result using (3.2) and (2.19). This is the

same behaviour that was observed in [7] for the purely orbifold case.

We now turn to the SO(n0) gauge group and turn on the generator

q = q1 = −q2 = diag
(

QSO(n0),0n1 ,0n2 ,0n1

)

, (3.18)

QSO(n0) =
i

2











0 1 0 . . .

−1 0 0 . . .

0 0 0 . . .

. . . . . . . . . . . .











. (3.19)
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Evaluating the amplitudes we find, using the tadpoles (2.17),

ASO(n0)
N=1 =

1

4

∑

k=1,3

A(k)
N=1

IR−−−−→
t′→∞

−
(

B

4π2

)2 ∫ ∞

t′

dt

2t
2 (n0 − n2) = +8

(

B

4π2

)2 ∫ ∞

t′

dt

2t
,

MSO(n0)
N=1 =

1

4

∑

k=1,2,3

M(k)
N=1

IR−−−−→
t′→∞

6

(

B

4π2

)2 ∫ ∞

t′

dt

2t
, (3.20)

ASO(n0)
N=2 =

1

4
A(2)

N=2 =−(n0+n2−2n1)

(

B

4π2

)2∫ ∞

0

dt

2t
=−(2n0−2n1+4)

(

B

4π2

)2∫ ∞

0

dt

2t
,

MSO(n0)
N=2 ≡ 0 . (3.21)

As described above tadpole cancellation ensures that in the UV the N = 1 annulus and

Mobius amplitudes cancel against each other. We can check this UV cancellation using the

expressions (3.10) which give

ASO(n0)
N=1

UV−−−→
l′→∞

−
(

B

4π2

)2 ∫ ∞

l′
dl 4 (n0 − n2) =

(

B

4π2

)2 ∫ ∞

l′
dl 16 , (3.22)

MSO(n0)
N=1

UV−−−→
l′→∞

−
(

B

4π2

)2 ∫ ∞

l′
dl 16 , (3.23)

leading to Λ
SO(n0)
2

UV−−→ 0. From closed string channel the non-cancelling subleading terms

in (3.22) and (3.23) are of order e−πl/M2
s and so vanish exponentially once l ≫ M2

s or

t ≪ 1/M2
s . Therefore, up to small additional corrections we obtain an effective cutoff at

Ms for the N = 1 amplitudes and an effective cutoff at MX for N = 2 amplitudes. To

compare with the Kaplunovsky-Louis expression we impose these cutoffs on the N = 1 and

N = 2 sector, also taking the IR cutoff at 1/µ2. We find

Λ
SO(n0)
2

8π2
=

1

16π2
(−14) ln

(

µ2

M2
s

)

+
1

16π2
(2n0 − 2n1 + 4) ln

(

µ2

M2
X

)

=
1

16π2
(2n0 − 2n1 − 10) ln

(

µ2

M2
s

)

+
1

16π2
(2n0 − 2n1 + 4) ln

(

M2
s

M2
X

)

≡
(

βN=1
SO(n0) + βN=2

SO(n0)

)

ln

(

M2
s

µ2

)

+ βN=2
SO(n0)ln

(

M2
X

M2
s

)

(3.24)

= βSO(n0)ln

(

M2
s

µ2

)

+ βN=2
SO(n0)ln

(

M2
X

M2
s

)

, (3.25)

where we defined βN=1
SO(n0) and βN=2

SO(n0) as the contributions in the IR to the β functions

coming from the N = 1 and N = 2 sectors respectively. The expression (3.24) differs from

the naive application of the KL formula (1.2). The difference arising from a non-vanishing

contribution to the β function from the N = 1 sector.
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To study the Sp(n2) gauge group we turn on the generator

q = q1 = −q2 = diag
(

0n0 ,0n1 , QSp(n2),0n1

)

, (3.26)

QSp(n2) =
1

2











1 0 0 . . .

0 −1 0 . . .

0 0 0 . . .

. . . . . . . . . . . .











. (3.27)

In a similar fashion this gives the result

Λ
Sp(n2)
2

8π2
=
(

βN=1
Sp(n2)

+ βN=2
Sp(n2)

)

ln

(

M2
s

µ2

)

+ βN=2
Sp(n2)ln

(

M2
X

M2
s

)

, (3.28)

where

βN=1
Sp(n2) =

1

16π2
(14) = −βN=1

SO(n0) , (3.29)

βN=2
Sp(n2) =

1

16π2
(2n0 − 2n1 + 4) = −βN=2

SO(n0) . (3.30)

The physics is therefore the same as the SO(n0) case: the effective β function undergoes a

jump at Ms and so there are two distinct phases of the running, one from MX to Ms and

one from Ms to µ.

Gathering these results together, we have

Λ
SO(n0)
2

8π2
=
(

∆ + βN=2
SO(n0)

)

ln

(

M2
s

µ2

)

+ βN=2
SO(n0)

ln

(

M2
X

M2
s

)

,

Λ
SU(n1)
2

8π2
= βN=2

SU(n1)
ln

(

M2
s

µ2

)

+ βN=2
SU(n1)ln

(

M2
X

M2
s

)

,

Λ
Sp(n2)
2

8π2
=
(

−∆ + βN=2
Sp(n2)

)

ln

(

M2
s

µ2

)

+ βN=2
Sp(n2)ln

(

M2
X

M2
s

)

, (3.31)

where ∆ = βN=1
SO(n0) = −βN=1

Sp(n2).

The form of the gauge couplings differ from the naive application of the KL formula as

in (1.2). The difference lies in the presence of the ∆ term in equations (3.31) associated to

N = 1 sectors which contribute to running from the string scale but not from the winding

scale. We now proceed to study how this discrepancy is resolved.

4 Threshold corrections: matching the field theory

Recall that the string calculation gives the coefficient multiplying the F 2 term in the La-

grangian which in the field theory also includes a tree-level coupling to chiral superfields Mk

L =

(

1

g2
a

+

K
∑

i=1

sa
kReMk

)

TrF 2
a . (4.1)

The coupling (4.1) comes from the holomorphic gauge kinetic function

fa(Φ) = S + sa
kMk . (4.2)
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The chiral superfields Mk correspond to closed string twisted modes with ReMk corre-

sponding to the NS-NS part and ImMk the RR part.

Geometrically the twisted modes correspond to collapsed two- and four-cycles. They

can therefore be thought of as dimensionally reducing the NS and RR supergravity form

fields on the collapsed two-cycle. These fields descend from reducing either J ∧ J + iC4 or

B2 + iC2 on collapsed two/four-cycles.7 Here J is the Kahler form, B2 the NS two-form,

and C2 and C4 are the RR two and four-form respectively. Depending on whether we

reduce the above fields on cycles or their dual cycles we can obtain either linear or chiral

multiplets depending on whether the bosonic 4d fields associated to the reduction of C4 are

scalars or 2-forms. We denote the chiral multiplet by Mk and the real scalar component of

the linear multiplet by mk.

In [6] the supergravity analysis that led to the KL formula (1.1) is carried out using

chiral multiplets. Therefore to compare the string result with the supergravity formula we

need to dualise the linear multiplet to a chiral multiplet. This procedure is described in

detail in [19] for the heterotic string. In appendix D we review this and also discuss the

IIB case (see [20] for the IIA case). Performing a similar analysis for the local IIB models

the result is that at tree level8

ReMk = mk , (4.3)

with mk the linear multiplet and Mk the chiral multiplet. mk always vanishes at the

singularity where Mk only vanishes at tree-level. However at 1-loop level this is modified

to (1.9) which we reproduce here

Re(Mk) = mk − αk ln R2 . (4.4)

An important point is that the 1-loop field redefinition (4.4) is tied to the 1-loop correction

to the gauge kinetic function and is therefore only present when the particular N = 1

twisted mode mk contributes to the β functions. As discussed in the introduction, this

precisely reproduces the behaviour required to match the string and field theory results if

the coupling sa
k are proportional to the β

(k)
a . In the next section we explicitly perform the

string calculation to check this proportionality.

4.1 Extracting closed string couplings

In order to calculate the correction to the gauge couplings induced by the field redefinitions

we need to know the coupling sa
k of the twisted closed string modes to the gauge field

strengths F a
µνF a,µν . One way to calculate this is by extracting the UV divergence of the

B4 amplitude which corresponds to exchanging an on-shell twisted modes sourced by the

magnetic field background [18]. However this method only gives (sak)
2 and so is insensitive

7The NS two-form B2 splits into a part that is even and a part that is odd under the orientifold action

B2 = B+
2 + B−

2 . B−

2 parameterises the modulus (by abuse of notation we label this B2 in the main text)

and therefore vanishes (at tree level) at the singularity. The field B+
2 can have a non-vanishing vev at the

singularity as in [25, 26].
8The analysis is basically the same as the heterotic case [19] but with the dilaton replaced by the twisted

mode. The only significant change is that the Kahler potential for the twisted mode is quadratic K ∼ m2
k

rather than logarithmic.
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B

B

Figure 1. From a supergravity perspective this represents an (ReMk)FµνFµν vertex sourcing an

Mk field which propagates and is then absorbed by the vacuum tadpole. By factoring out the

vacuum tadpole we can infer the coefficient of the (ReMk) FµνFµν coupling.

to the sign of sak which for us plays a crucial role. The method we employ is to study

the open string UV divergence of the B2 Annulus amplitudes. In the closed string tree

level channel this amplitude can be interpreted as a vertex between the NSNS closed

string twisted mode and the gauge field strength, sourcing the twisted mode which is then

absorbed by the vacuum, see figure 4.1. Of course the overall diagram vanishes once tadpole

cancellation is imposed but the (ReMk)FµνFµν coupling can be extracted by stripping off

the tadpole piece which just corresponds to the trace over the other end of the string. This

is because the tadpoles give this coupling for the RR fields but due to supersymmetry these

are equivalent up to a constant to the NS tadpoles.9

4.2 The Z4 case

In this section we calculate the N = 1 twisted mode coupling to the gauge fields for the

Z4 case and show that it takes the form appropriate for reconciling the string calculation

of section 3 with the field theory KL formula (1.1).

The Annulus UV amplitudes read

ASO(n0)
N=1

UV−−−→
l′→∞

−
(

B

4π2

)2 ∫ ∞

l′
dl4 (n0 − n2) , (4.5)

ASp(n2)
N=1

UV−−−→
l′→∞

−
(

B

4π2

)2 ∫ ∞

l′
dl4 (n2 − n0) , (4.6)

ASU(n1)
N=1

UV−−−→
l′→∞

0 . (4.7)

There is a single closed string twisted mode m0 and its coupling to the vacuum is given by

Trγθ = (n0 − n2) which gives

s
SO(n0)
0 =

βN=1
SO(n0)

α0
, s

Sp(n2)
0 =

βN=1
Sp(n2)

α0
, s

SU(n1)
0 = 0 . (4.8)

9Each twisted sector gives rise to two real closed string modes and their coupling is given by the real and

imaginary parts of Trγk
θ . However in our orientifolds the imaginary part will always vanish corresponding

to projecting out that twisted mode.
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Here α0 is some (gauge group) universal constant that corresponds to extracting the ap-

propriately normalised coupling and propagator. We therefore find the required result that

the coupling are proportional to the N = 1 β functions. Recall that in terms of the gauge

kinetic functions this reads

fSO(n0) = S +
βN=1

SO(n0)

α0
M0 , (4.9)

fSU(n1) = S , (4.10)

fSp(n2) = S +
βN=1

Sp(n2)

α0
M0. (4.11)

We therefore see that if at the orbifold point the chiral superfield

ReM0 = −α0ln R2 , (4.12)

the holomorphic gauge couplings become non-universal. The string results then match

exactly the field theory formula with

sa
0ReM0 = −βN=1

a ln

(

M2
X

M2
s

)

. (4.13)

The striking point is that a single field redefinition is capable of altering three β functions

in a way to resolve the discrepancy with the naive use of the Kaplunovsky-Louis formula.

5 More examples

In this section we present two more examples of orientifolded singularities, Z6 and Z
′

6, that

serve as checks on the above analysis and understanding. As with the Z4 case, as far as

we are aware these have not been previously presented in the literature and so we outline

their construction before moving on to the magnetised amplitude calculations. These

orientifolds exhibits more structure compared to the Z4 example through the presence of

more N = 1/N = 2 twisted closed string modes.

5.1 The C
3/Z6 orientifold

The Z6 orbifold action is generated by θ = (1/6, 1/6,−1/3). We take the orientifold spatial

action to be R = (7/12, 1/12,−2/3). The orientifold group is therefore
{

(0, 0, 0) ,

(

1

6
,
1

6
,−1

3

)

,

(

1

3
,
1

3
,−2

3

)

,

(

1

2
,
1

2
,−1

)

,

(

2

3
,
2

3
,−4

3

)

,

(

5

6
,
5

6
,−5

3

)

,

ΩI

(

7

12
,

1

12
,−2

3

)

,ΩI

(

3

4
,
1

4
,−1

)

,ΩI

(

11

12
,

5

12
,−4

3

)

,ΩI

(

13

12
,

7

12
,−5

3

)

,

ΩI

(

5

4
,
3

4
,−2

)

,ΩI

(

17

12
,
11

12
,−7

3

)}

, (5.1)

Including the spatial action of I the fixed point locus consists solely of the origin. We take

the orbifold generating element

γθ = diag(1n0 , α1n1 , α
21n2 , α

31n3 , α
41n4 , α

51n5) with α = eπi/3 , (5.2)
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Multiplicity Representation

SO(n0) SU(n1) SU(n2) Sp(n3)

2 n0 n̄1 1 1

2 1 n1 n̄2 1

2 1 1 n2 n3

1 n0 1 n2 1

1 1 n̄1 1 n3

1 1 1 Ān2 1

1 1 Sn1 1 1

Table 2. Field content and representations for Z6 orientifold. The ni denote the fundamental

representation and S and A denote symmetric and anti-symmetric representations respectively.

and impose n1 = n5 and n2 = n4. For the orientifold action we take

γΩ′ =



















1n0 0 0 0 0 0

0 0 0 0 0 α1/2ǫn5

0 0 0 0 αǫn4 0

0 0 0 α3/2ǫn3 0 0

0 0 α2ǫn2 0 0 0

0 α5/2ǫn1 0 0 0 0



















, (5.3)

with ǫ denoting the anti-symmetric matrix with unit off-diagonal entries.

Calculating the tadpoles using (2.10)–(2.11) leads to

Tr [γθ] − 8 = Tr [γθ2 ] = 0 . (5.4)

There are two real closed string N = 1 twisted modes modes m0 and m1 associated with

the first and second tadpole conditions in (5.4) respectively. The tadpole constraints (5.4)

impose the conditions

n2 = n0 − 4 ,

n3 = n1 − 4 . (5.5)

The massless fermionic spectrum of the theory can be calculated using (2.9) which

gives the matter content shown in table 2. The gauge group is

G = SO(n0) × U(n1) × U(n2) × Sp(n3) . (5.6)

The non-abelian anomalies of the theory correspond to (5.5). We are also interested in

the beta functions for the gauge groups and these read, after imposing anomaly cancella-

tion (5.5),

βSO(n0) =
1

16π2
(−2n0 + 2n1 + 2) = −βSp(n3) , (5.7)

βSU(n1) =
1

16π2
(2n0 − 2n1 − 5) = −βSU(n2) . (5.8)

– 21 –



J
H
E
P
0
9
(
2
0
0
9
)
0
1
9

The calculation for the threshold corrections proceeds as in section 3.2 and here we

quote the relevant results. The vacuum energies read

Λa
2

8π2
=
(

βN=1
a + βN=2

a

)

ln

(

M2
s

µ2

)

+ βN=2
a ln

(

M2
X

M2
s

)

, (5.9)

where we have

βN=1
SO(n0) = −βN=1

Sp(n3) =
1

16π2
(−2) , βN=2

SO(n0) = −βN=2
Sp(n3) =

1

16π2
(−2n0+2n1+4) , (5.10)

βN=1
SU(n1) = −βN=1

SU(n2) =− 1

16π2
, βN=2

SU(n1) = −βN=2
SU(n2) =

1

16π2
(2n0−2n1−4) . (5.11)

An important point is that the N = 1 contributions to Λa
2 comes solely from the γθ sector.

In terms of the N = 1 twisted modes m0 and m1 we have (as in section 1)

β0
a = βN=1

a ,

β1
a = 0 . (5.12)

The gauge couplings take the form

Λ
SO(n0)
2

8π2
=
(

−2∆ + βN=2
SO(n0)

)

ln

(

M2
s

µ2

)

+ βN=2
SO(n0)ln

(

M2
X

M2
s

)

,

Λ
SU(n1)
2

8π2
=
(

−∆ + βN=2
SU(n1)

)

ln

(

M2
s

µ2

)

+ βN=2
SU(n1)ln

(

M2
X

M2
s

)

,

Λ
SU(n2)
2

8π2
=
(

∆ + βN=2
SU(n2)

)

ln

(

M2
s

µ2

)

+ βN=2
SU(n2)ln

(

M2
X

M2
s

)

,

Λ
Sp(n3)
2

8π2
=
(

2∆ + βN=2
Sp(n3)

)

ln

(

M2
s

µ2

)

+ βN=2
Sp(n3)

ln

(

M2
X

M2
s

)

, (5.13)

where as before ∆ = βN=2
SO(n0).

We can now check that the closed string twisted modes couple in the correct way to

match the string calculation with the field theory results. In this case we have two closed

string twisted modes m0 and m1. We find

s
SO(n0)
0 = −s

Sp(n3)
0 =

βN=1
SO(n0)

α0
, s

SO(n0)
1 = s

Sp(n3)
1 =

βN=1
SO(n0)

α1
,

s
SU(n1)
0 = −s

SU(n2)
0 =

βN=1
SU(n1)

α0
, s

SU(n1)
1 = s

SU(n2)
1 = −

βN=1
SU(n1)

α1
. (5.14)

Here α0 and α1 are constants (different from their Z4 values). In terms of the gauge kinetic

functions this reads

fSO(n0) = S +
βN=1

SO(n0)

α0
M0 +

βN=1
SO(n0)

α1
M1 ,

fSU(n1) = S +
βN=1

SU(n1)

α0
M0 −

βN=1
SU(n1)

α1
M1 ,

fSU(n2) = S +
βN=1

SU(n2)

α0
M0 +

βN=1
SU(n2)

α1
M1 ,

fSp(n3) = S +
βN=1

Sp(n3)

α0
M0 −

βN=1
Sp(n3)

α1
M1 . (5.15)
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There is new structure compared to the Z4 case. We now have two linear multiplet N = 1

twisted modes m0 and m1. m0 has an appropriate coupling proportional to the β functions,

but m1 does not as its coupling to the SU(n1) and Sp(n3) gauge groups has the wrong

sign. Therefore we expect that in this case M0 undergoes a one-loop redefinition restoring

consistency with the Kaplunovsky-Louis formula while M1 does not undergo a redefini-

tion and still has vanishing vev at the singularity. This matches the fact that the 1-loop

redefinition is proportional to the contribution to the β functions and the result (5.12).

From the string perspective the redefinition is related to the fact that fractional O-

planes wrap the m0 collapsed cycle and contribute to the m0 tadpole, while O-planes

do not wrap the m1 cycle and in closed string channel this tadpole is wholly sourced by

annulus diagrams.

5.2 The C
3/Z

′
6 orientifold

The Z
′
6 orbifold action is generated by θ = (1/6, 1/3,−1/2). We take the orientifold spatial

action to be R = (7/12,−1/3,−1/4). The orientifold group is therefore

{

(0, 0, 0) ,

(

1

6
,
1

3
,−1

2

)

,

(

1

3
,
2

3
,−1

)

,

(

1

2
, 1,−3

2

)

,

(

2

3
,
4

3
,−2

)

,

(

5

6
,
5

3
,−5

2

)

,

ΩI

(

7

12
,−1

3
,−1

4

)

,ΩI

(

3

4
, 0,−3

4

)

,ΩI

(

11

12
,
1

3
,−5

4

)

,ΩI

(

13

12
,
2

3
,−7

4

)

,

ΩI

(

5

4
, 1,−9

4

)

,ΩI

(

17

12
,
4

3
,−11

4

)}

, (5.16)

The tadpoles are

Tr [γθ] + 4 = 0 . (5.17)

This is associated with a single N = 1 twisted closed string mode. The CP embedding is

the same as for Z6 but now the tadpole constraint reads

− n0 − n1 + n2 + n3 − 4 = 0 . (5.18)

The massless fermionic spectrum gives the matter content shown in table 3 and the gauge

group is the same as Z6. The non-abelian anomalies match the tadpoles (5.18). Using the

tadpoles (5.18) to eliminate n3, the β functions read

βSO(n0) =
1

16π2
(−2n0 + 2n1 + 10) , (5.19)

βSU(n1) =
1

16π2
(n0 − 2n1 + n2 + 3) , (5.20)

βSU(n2) =
1

16π2
(n0 + 2n1 − 3n2 + 1) , (5.21)

βSp(n3) =
1

16π2
(−2n0 − 2n1 + 4n2 − 18) . (5.22)

The calculation for the threshold corrections gives the vacuum energies

Λa
2

8π2
=
(

βN=1
a + βN=2

a

)

ln

(

M2
s

µ2

)

+ βN=2
a ln

(

M2
X

M2
s

)

, (5.23)
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Multiplicity Representation

SO(n0) SU(n1) SU(n2) Sp(n3)

1 n0 n̄1 1 1

1 1 n1 n̄2 1

1 1 1 n2 n3

1 n0 1 n̄2 1

1 1 n1 1 n3

1 n0 1 1 n3

1 1 n1 n2 1

1 1 n̄1 n̄2 1

1 1 1 An2 1

1 1 S̄n1 1 1

Table 3. Field content and representations for Z′
6 orientifold. The ni denote the fundamental

representation and S and A denote symmetric and anti-symmetric representations respectively.

where we have

βN=1
SO(n0) = −βN=1

Sp(n3) =
1

16π2
(10) , (5.24)

βN=1
SU(n1) = −βN=1

SU(n2) =
1

16π2
(5) , (5.25)

βN=2
SO(n0) =

1

16π2
(−2n0 + 2n1) , (5.26)

βN=2
SU(n1) =

1

16π2
(n0 − 2n1 + n2 − 2) , (5.27)

βN=2
SU(n2) =

1

16π2
(n0 + 2n1 − 3n2 + 6) , (5.28)

βN=2
Sp(n3) =

1

16π2
(−2n0 − 2n1 + 4n2 − 8) . (5.29)

We can now check that the closed string twisted modes couple in the correct way to match

the string calculation with the field theory results. In this case we have one closed string

twisted mode m0. We find

s
SO(n0)
0 = −s

Sp(n3)
0 =

βN=1
SO(n0)

α0
,

s
SU(n1)
0 = −s

SU(n2)
0 =

βN=1
SU(n1)

α0
. (5.30)

We see again that the closed string mode m0 has the appropriate coupling to match the

field theory results after the appropriate redefinition.

5.3 D3-D7 orbifolds

We can also resolve here a puzzle encountered in [7]. In that paper systems of D3/D7

branes on the C
3/Z3 orbifold singularity were considered. As described in [2] such systems

give phenomenologically promising spectra. It was found that the string computation for
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threshold corrections to the D3 gauge couplings gave universal running between the string

and winding scale and non-universal running below the string scale.

We can resolve this issue and find that full agreement with Kaplunovsky-Louis can be

found through a redefinition of the two twisted moduli. We briefly summarise the results

but for full details of the models refer to [2, 7]. The holomorphic gauge couplings are

fSU(n0) = S + M1,

fSU(n1) = S − M1

2
+

√
3

2
M2,

fSU(n2) = S − M1

2
−

√
3

2
M2. (5.31)

The β functions can be written as

Λa
2

8π2
=
(

βN=1
a + βN=2

a

)

ln

(

M2
s

µ2

)

+ βN=2
a ln

(

M2
X

M2
s

)

, (5.32)

with

βN=1
SU(n0) =

1

16π2

(

2n7
0 − n7

1 − n7
2

3

)

,

βN=1
SU(n1) =

1

16π2

(−n7
0 + 2n7

1 − n7
2

3

)

,

βN=1
SU(n2) =

1

16π2

(−n7
0 − n7

1 + 2n7
2

3

)

. (5.33)

Through the redefinitions

ReM1 = m1 +
1

16π2

(

2n7
0 − n7

1 − n7
2

3

)

ln R2, (5.34)

√
3

2
ReM2 =

√
3

2
m2 +

1

16π2

(

n7
1 − n7

2

2

)

ln R2, (5.35)

we can obtain a full match with Kaplunovsky-Louis. In this case the non-trivial aspect

of the redefinition is that two field redefinitions are sufficient to match three gauge cou-

plings. Note that in this case there are two fields M1 and M2 contributing from the same

twisted sector which did not occur in the orientifold models. This slightly modifies the

scenario so that the relationship between the twisted mode gauge coupling sk
a and the βa

functions is generalised.

6 Conclusions

In this work we studied threshold corrections to the gauge couplings in local models of

branes at orientifold singularities. This extends the work of [7] on threshold corrections at

orbifold singularities and provides new tractable examples of local models with full CFT

control. For local models the general supergravity analysis performed by Kaplunovsky and

Louis [5, 6] points towards a unification scale that is enhanced by the bulk radius from the

string scale, with field theory running below this winding mode scale.
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Our aim has been to understand this formula and address the question of when running

starts at the winding mode scale and when running starts at the string scale. We analysed

this issue using explicit string calculations and showed that in general this apparent uni-

fication at an enhanced scale is only present in particular constructions. The low-energy

gauge couplings take the form

1

g2
(µ) =

1

g2

∣

∣

∣

∣

0

+ βa ln

(

M2
s

µ2

)

+ βN=2
a ln

(

M2
X

M2
s

)

, (6.1)

where MX is the winding mode scale. Unification of the gauge coupling at the enhanced

scale MX occurs whenever there are no non-universal N = 1 fully twisted, that is modes

confined to the singularity, contributions to the gauge coupling threshold corrections. Such

modes give contributions to gauge coupling running that start at Ms. If there is no N = 1

contribution then the apparent unification at the enhanced scale can be understood [7]

from the fact that the remaining N = 2 contribution gives field theory running up to the

winding mode scale where cancellation of global tadpoles implies that the winding modes

cut the running off.

We performed detailed calculations to show how this can be reconciled with the

Kaplunovsky-Louis formula by an appropriate field redefinition of the N = 1 closed string

modes. This arises from dualising the string linear multiplets to the supergravity chiral

multiplets used in the Kaplunovsky-Louis analysis. This required particular couplings of

these modes to the gauge fields and the string calculations showed that these couplings are

indeed as required.

Understanding the form of N = 1 and N = 2 contributions to the gauge coupling

threshold corrections is therefore important in understanding gauge coupling unification

in local models. Open-closed string duality relates the threshold corrections to tadpoles

and for orbifold/orientifold models gives a relatively simple rule as to when this occurs: if

there is a contribution from multiple diagrams (that transform differently from the IR to

the UV) to the local tadpoles then N = 1 sectors contribute threshold corrections to the

gauge couplings. In the examples we presented the D3-D3 cylinder was supplemented by

contributions from the Mobius strip in case of orientifolds or the D3-D7 cylinder in the

case of D7 branes present.

The fact that generic branes at singularities local models only exhibit gauge coupling

unification up to corrections logarithmic in the bulk radius can be attributed to the fact

that they are not GUT models: the different gauge groups originate from different branes

and the tree-level unification of gauge couplings at the singularity is accidental and does

not survive at 1-loop. This comes from the fact that in general twisted sectors couple

non-universally to the gauge groups. Although naively it appears that holomorphic gauge

couplings are universal at the singularity, we have seen that at one loop level this is not

the case, and the non-GUT nature of the setup becomes apparent.

This implies that for true local GUTs this will not occur. We will discuss threshold

corrections in this case in [8]. It would also be interesting to study the mirror type IIA

picture with intersecting D6 branes. There the Kaplunovsky-Louis formula would again

imply that there can be a significant gap between the apparent unification scale and the

string scale, especially within the weakly-coupled models of [27]. However there is no ge-
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ometric picture of a local model and so it would be interesting to understand the relevant

string physics (see [20] for relevant work). Finally it is clear that questions regarding gauge

coupling in local models can only be fully answered once the dynamics of the blow-up

fields are understood.
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A Anomalous U(1)s

In this section we study anomalous U(1)s in branes at singularity models. More precisely

we study the Green-Schwarz mechanism for generating U(1) masses, which automatically

operates in the case of anomalous U(1)s but can also affect non-anomalous U(1)s. This

topic does not quite fall within the narrative of the main text and is therefore relegated

to the appendix. Further, the cancellation of U(1) anomalies for models of branes at

singularities has been studied following the initial work of [22]. However, the physics of

anomalous U(1)s has some overlap with the gauge threshold corrections discussed in the

main text. We also present our analysis using the background field method which differs

from the analysis of [22]. We therefore present this appendix as containing partially new

results but primarily to illuminate the physics associated to U(1)s in local models.

The physics of interest is of course the Green-Schwarz mechanism. The relevant terms

in the four dimensional theory are C0F ∧ F and C2 ∧ F .10 We can extract these terms

in the action using the background field method. The (open string UV, closed string IR)

divergence for the B2 and B4 amplitudes correspond to the on-shell exchange of the RR

mode C2 and the NS partner of the C0 field respectively. By turning on a background field

for the most general combination of U(1)s we can extract which U(1) combinations have

each type of coupling. This determines which U(1)s participate in Green-Schwarz anomally

canellation and/or become massive.

10It is possible to think of these as geometrically arising from say a D7 brane with the Chern-Simons

term reduced on a collapsing four-cycle Σ with two-cycle submanifolds ωα. We can write

Z

D7

C4 ∧ F ∧ F =

Z

Σ

C4

Z

M4

F ∧ F +

Z

Σ

ωα ∧ f

Z

M4

Cα
2 ∧ F , (A.1)

where f denotes the world volume flux. A key point here is that the two-cycles ωα need not be globally

homologically non-trivial, in which case there is no propagating field associated with Cα
2 and no Green-

Schwarz coupling. As this property requires a global completion to determine, this corresponds to the N = 2

twisted sector fields being non-normalisable in the non-compact geometry as discussed in this appendix. At

the CFT level this corresponds to a logarithmic divergence, which may either vanish or be enhanced to a

linear (in the cylinder length, quadratic in energy) divergence in the presence of the global completion.
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Multiplicity Representation

2 (n0, n̄1)

2 (n1, n̄2)

2 (n2, n̄3)

2 (n3, n̄0)

1 (n0, n̄2)

1 (n2, n̄0)

1 (n1, n̄3)

1 (n3, n̄1)

Table 4. Field content and representations for Z4 orbifold. The bracket pairs are bi-fundamental

representations.

For purposes of simplicity and clarity we perform the calculations within a Z4 orbifold

setting (with no orientifolds). The Z4 orbifold action is generated by θ = (1/4, 1/4,−1/2).

Since there are no orientifolds the tadpoles are sourced purely by the Annulus diagram and

therefore read

Tr [γθ] = 0 . (A.2)

We take the orbifold generating element

γθ = diag(1n0 , α1n1 , α
21n2 , α

31n3) with α = eπi/2 , (A.3)

The tadpole constraints impose the condition

n0 = n2 ,

n1 = n3 . (A.4)

The massless fermionic spectrum of the theory can be calculated using (2.2) which gives

the matter content shown in table 4. The non-abelian anomalies of the theory correspond

to (A.4). We are also interested in the abelian and mixed anomalies. We consider a general

U(1) combination

U(1)Y ≡ Y0U(1)0 + Y1U(1)1 + Y2U(1)2 + Y3U(1)3 . (A.5)

Then, after imposing the tadpoles, the mixed and abelian gauge anomalies are given by

ASU(n0)2−U(1)Y
= −ASU(n2)2−U(1)Y

= 2n1(Y3 − Y1)

ASU(n1)2−U(1)Y
= −ASU(n3)2−U(1)Y

= 2n0(Y0 − Y2)

AU(1)3Y
= −6n0n1

[

(Y1 − Y3)(Y
2
0 − Y 2

2 ) − (Y0 − Y2)(Y
2
1 − Y 2

3 )
]

. (A.6)

To extract the relevant coupling we turn on the background field

q1 = −q2 =
1

N (Y01n0, Y11n1 , Y21n2, Y31n3) , (A.7)

where N =
√

2
∑3

a=0 Y 2
a na.
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The N = 1 sector. The B2 coefficient for the Annulus amplitude in the UV (C.8) for

the N = 1 sector can be decomposed as

AB2

N=1 = Aq2
1+q2

2
N=1 + Aq1q2

N=1 . (A.8)

The amplitude Aq2
1+q2

2
N=1 corresponds to the tadpoles exactly as in the case of the non-abelian

generators studied in the main sections. The amplitude Aq1q2

N=1 vanished for the non-abelian

case because the generators were traceless. However it is non vanishing for the abelian case

and in the UV gives the divergence associated with a C2 ∧ F coupling in the action with

C2 being an N = 1 twisted RR mode in this case. In the closed string channel the

amplitude reads

Aq1q2

N=1 −−−→
l′→∞

(

B

4π2

)2 ∫ ∞

l′
dl

8

N 2

[

n2
0 (Y0 − Y2)

2 + n2
1 (Y1 − Y3)

2
]

. (A.9)

We see that this gives precisely the coupling needed to cancel mixed anomalies, and half

of the appropriate expressions for the cubic abelian anomalies (A.6). Any U(1)Q for which

this amplitude is non-vanishing gains a mass. The B4 amplitude gives the coupling C0F∧F

and reads

Aq2
1q2

2
N=1 −−−→

l′→∞
−B2

(

B

4π2

)2 ∫ ∞

l′
dl

2

N 4

[

n2
0

(

Y 2
0 − Y 2

2

)2
+ n2

1

(

Y 2
1 − Y 2

3

)2
]

. (A.10)

This takes the form required to match the expression for the cubic anomalies. We have

therefore checked that the N = 1 RR field couples in the correct way to cancel the

abelian anomalies.

The N = 2 sector. The closed string N = 2 sector is sensitive to the global geometry.

Extracting the coupling by studying the UV divergence of the B2 and B4 amplitudes is

more complicated since it depends on the global completion of the local model. This is

reflected in terms of winding modes affecting the amplitude above the winding scale. Indeed

the local, in the sense of not including winding modes, amplitudes take the form

Aq1q2

N=2 −−−→
l′→∞

(

B

4π2

)2 ∫ ∞

l′

dl

l

8

N 2
[n0 (Y0 + Y2) − n1 (Y1 + Y3)]

2 , (A.11)

Aq2
1q2

2
N=2 −−−→

l′→∞
−B2

(

B

4π2

)2 ∫ ∞

l′

dl

l

1

N 4

[

n0

(

Y 2
0 + Y 2

2

)

− n1

(

Y 2
1 + Y 2

3

)]2
. (A.12)

The N = 2 divergence is logarithmic rather than linear, as was the case for the N = 1

sector, which reflects the fact that the closed string N = 2 modes are not propagating phys-

ical modes without a global completion. This implies that they cannot participate in the

anomaly cancellation since this is a local property. However they can still induce a Green-

Schwarz mass for U(1) fields depending on the global completion. Indeed we see that the

dependence of the amplitudes on the Ya is not directly related to the field theory anomalies.

We now want to investigate the physics once we compactify the space. As our testbed

we will use the T 6/Z4 orbifold shown in figure A. We will introduce an additional brane
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x1 x2 x
3

y
1

y
2

y
3

Figure 2. The T 6/Z4 orbifold. Dark circles correspond to θ fixed points and hollow squares

correspond to θ2 fixed points.

stack to cancel twisted tadpoles. We will not cancel untwisted tadpoles; while clearly this

is necessary in a full compactification it does not affect the physics of interest here. As a

compact space this orbifold has h1,1 = 31, h2,1 = 7. The 31 elements of h1,1 decomposes

as 5 untwisted 2-cycles, 16 θ1 twisted cycles stuck at the 16 Z4 fixed points, 6 θ2 twisted

cycles stuck at Z4 invariant combinations of θ2 fixed points, and 4 θ2 twisted cycles at Z4

fixed points and propagating across the third T 2.

We place a single stack of fractional branes at the origin (0, 0, 0) (point A) of multiplic-

ity (n0, n1, n2, n3) = (N,M,N,M). As in [7] we also introduce a stack of fractional branes

on the (0,0,i/2) (point B) of multiplicity (n0, n1, n2, n3) = (M,N,M,N). This cancels the

N = 2 twisted tadpoles. The effect of the compact space and additional stack of branes is

to modify the q1q2 amplitude. We must now include the AA winding modes which give an

extra factor
∑

n,m e−πR2t(n2+m2).11 In the UV limit l → ∞ this gives

∑

n,m

e−πR2t(n2+m2) → 2l

R2

(

1 + O
(

e−
2πl
R2

))

, (A.13)

The amplitude therefore becomes

Aq1q2

N=2 −−−→
l′→∞

(

B

4π2

)2 ∫ ∞

l′

dl

l

2l

R2

8

N 2
[n0 (Y0 + Y2) − n1 (Y1 + Y3)]

2 . (A.14)

This is now linearly divergent and corresponds to a physical coupling

ms

R
(n0(Y0 + Y2) − n1(Y1 + Y3))C2 ∧ F , (A.15)

which induces a mass for the field.

We can now determine the masses of the non-anomalous U(1)s in the model. There

are two orthogonal non-anomalous U(1)s to consider

U(1)diag =
1

n0
(U(1)0 + U(1)2) +

1

n1
(U(1)1 + U(1)3) , (A.16)

11There is also potentially an AB winding mode stack with a factor
P

n,m e−πR2t((n+1/2)2+m2), which

does not contribute to the q1q2 sector.
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U(1)tw =
1

n1
(U(1)0 + U(1)2) −

1

n0
(U(1)1 + U(1)3) . (A.17)

From (A.15) we see that U(1)diag remains massless while U(1)tw gains a mass.
Actually within a global context C2 can couple to both the A and B stacks of branes.

We therefore ought to consider a general U(1) which combines both stacks of branes,
U(1) =

∑

a YaU(1)Aa + ZaU(1)Ba . As neither U(1)Adiag nor U(1)Bdiag have any coupling to the
twisted sectors, the same is true of linear combinations of these, which therefore remain
massless in the compact model. The interesting case, which we focus on, is the combination
U(1)Atw ± U(1)Btw. We can in fact verify that for

U(1)X =

(

1

n1
(U(1)0+U(1)2) −

1

n0
(U(1)1+U(1)3)

)

−
(

1

n0
(U(1)0+U(1)2) −

1

n1
(U(1)1+U(1)3)

)

,

(A.18)

then Aq1q2

N=2 → 0. This implies that the amplitude has no linear divergence and U(1)X has

no C2∧F coupling to give it a mass. In contrast U(1)Atw +U(1)Btw has a nonvanishing Aq1q2

N=2

and becomes massive with a mass given by ∼ ms/R consistent with [28, 29].

In total there are then three massless orthogonal U(1)s present:

U(1)Adiag =
1

n0
(U(1)A0 + U(1)A2 ) +

1

n1
(U(1)A1 + U(1)A3 ) , (A.19)

U(1)Bdiag =
1

n1
(U(1)B0 + U(1)B2 ) +

1

n0
(U(1)B1 + U(1)B3 ) ,

U(1)X =

(

1

n1
(U(1)A0 + U(1)A2 ) − 1

n0
(U(1)A1 + U(1)A3 )

)

−
(

1

n0
(U(1)B0 + U(1)B2 ) − 1

n1
(U(1)B1 + U(1)B3 )

)

.

The third U(1) mixes the ‘visible’ and ‘hidden’ sector. The details of this U(1), and the

fields that are charged under it, depend on the precise nature of the hidden sector.

This shows explicitly at the CFT level how the masses of non-anomalous U(1)s are

determined depending on the global geometry. Analysed locally, we obtain a logarithmic

divergence. If the cycle is globally trivial, then as we extend to a fully global model the

divergence vanishes and the Green-Schwarz coupling is absent. If the cycle is non-trivial,

then the logarithmic divergence becomes a linear divergence suppressed by the bulk radius.

This linear divergence signals the presence of the Green-Schwarz term and the U(1) mass.

The same techniques using the background field formalism should be applicable for the

related problem of studying kinetic mixing among separate U(1)s which may be interesting

to carry out. This would be complementary to the vertex operator techniques used in [30].

B Tadpoles

In this appendix we calculate the tadpole divergences for local orientifolds. We are inter-

ested in N = 1 fully twisted tadpoles that receive contributions form the annulus, Mobius

strip, and Klein bottle one-loop amplitudes. The annulus amplitude is given by (we work

in units with 2α′ = 1)

A = −
∫ ∞

0

dt

2t
STr

[

1

N

N
∑

k=0

θk

(

1 + (−1)F

2

)

q(pµpµ+M2)/2

]

. (B.1)
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Here t parameterises the annulus width with t → 0 corresponding to the UV and t → ∞ the

IR. The sum over θk imposes the orbifold projection and
(

1+(−1)F

2

)

the GSO projection.

q = e2πiτ = e−πt where τ is the torus parameter for the annulus τ = it/2. pµ and M are

the momentum and mass of the string states. The STr stands for tracing over the bosons

and fermions as
∑

NS −
∑

RR . Performing this trace we can write

A =
1

N

N
∑

k=0

A(k) , (B.2)

with

A(k)
N=1 =−

∫

dt

2t

1

(2π2t)2
Tr
[

γk ⊗ γ−1
k

]

∑

α,β=0,1/2

ηαβ

2

ϑ

[

α

β

]

η3

3
∏

i=1

(

−2 sin πθk
i

)

ϑ

[

α

β+θk
i

]

ϑ

[

1/2

1/2+θk
i

] .

(B.3)

Here the η and θ functions are functions of q and are explicitly given in appendix E. We

have ηαβ = (−1)2(α+β−2αβ). The trace is coming from the trace over the CP indices. The

terms with α = 0 and α = 1/2 are due to RR and NS states respectively.
Similarly we have for the Mobius strip and Klein bottle

M(k)
N=1 =

∫

dt

2t

1

(2π2t)2
Tr
[

γΩ′

k
γΩ′−T

k

]

∑

α,β=0,1/2

ηαβ

2

ϑ

[

α

β

]

η3

3
∏

i=1

(

−2 sin
(

πRk
i

))

ϑ

[

α

β+Rk
i

]

ϑ

[

1/2

1/2+Rk
i

] , (B.4)

K(k)
0 = 4

∫

dt

2t

1

(2π2t)2

∑

α,β=0,1/2

ηαβ

2

ϑ

[

α

β

]

η3

3
∏

i=1

(

−2 sin
(

2πRk
i

)

4 cos2
(

πRk
i

)

) ϑ

[

α

β + 2Rk
i

]

ϑ

[

1/2

1/2 + 2Rk
i

] , (B.5)

K(k)
2 = 4

∫

dt

2t

1

(2π2t)2

∑

α,β=0,1/2

ηαβ

2

ϑ

[

α

β

]

η3

3
∏

i=1

(

−2 sin
(

2πRk
i

)

4 cos2
(

πRk
i

)

)δi
ϑ

[

α + θ
N/2
i

β + 2Rk
i

]

ϑ

[

1/2 + θ
N/2
i

1/2 + 2Rk
i

] . (B.6)

Here

Rk
i = θk

i + Ri . (B.7)

The last amplitude K(k)
2 only occurs for even orientifolds and in that case

δi =

{

0 if θ
N/2
i mod 1 = 1/2

1 otherwise
. (B.8)

It corresponds to the contribution for the Z2 twisted closed string sector with all other

contributions, apart from the untwisted sector K(k)
0 , vanishing by symmetry. The Mobius

strip amplitude is a function of −q and the Klein bottle of q2 corresponding to torus

parameters of τ = 1/2 + it/2 and τ = it respectively. The extra factors of cos2 in the

denominators are due to zero mode integration over the internal space [31].
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To extract the UV divergence we can modular transform, using formulae in appendix
E, to the (tree level) closed string channel through the transformations t = 1/l, t = 1/4l,
t = 1/2l for the annulus, Mobius strip and Klein bottle respectively. l is now the cylinder
length and the UV limit is given by l → ∞. Performing the transformation we find12

A(k)
N=1 =

i

4

∫

dl

(2π2)
2 Tr

[

γk ⊗ γ−1
k

]

∑

α,β=0,1/2

ηαβ

2

ϑ

[

β

−α

]

η3

3
∏

i=1

(−2 sinπθi)

ϑ

[

β + θi

−α

]

ϑ

[

1/2 + θi

−1/2

] (B.9)

M(k)
N=1 = −2i

∫

dl

(2π2)
2 Tr

[

γΩ′

k
γΩ′−T

k

]

∑

α,β=0,1/2

ηαβ

2

ϑ

[

α

β

]

η3

3
∏

i=1

(

−2 sin
(

πRk
i

))

ϑ

[

α+2Rk
i

β+Rk
i

]

ϑ

[

1/2+2Rk
i

1/2+Rk
i

] .

(B.10)

K(k)
0 = −4i

∫

dl

(2π2)
2

∑

α,β=0,1/2

ηαβ

2

ϑ

[

β

−α

]

η3

∏3
i=1

(

−2 sin 2πRk
i

)

∏3
i=1 4 cos2

(

πRk
i

)

ϑ

[

β + 2Rk
i

−α

]

ϑ

[

1/2 + 2Rk
i

−1/2

] . (B.11)

K(k)
2 = −4i

∫

dl

(2π2)2

∑

α,β=0,1/2

ηαβ

2

ϑ

[

β

−α

]

η3

∏3
i=1

(

−2 sin2πRk
i

)δi

∏3
i=1

(

4 cos2
(

πRk
i

))δi

ϑ

[

β + 2Rk
i

−α − θ
N/2
i

]

ϑ

[

1/2 + 2Rk
i

−1/2− θ
N/2
i

] . (B.12)

Here the annulus and Klein bottle amplitudes are functions of q̃ = e−4πl while the Mobius

strip is a function of −q̃.

The RR tadpoles are given in tree channel by α = 0 , β = 1
2 for the annulus and Klein

bottle and α = 1
2 , β = 0 for the Mobius strip. In the UV limit l → ∞ the amplitudes read

A(k)
N=1 −−−→

l′→∞
−
∫ ∞

l′

dl

4π2

1

4
Tr [γk] Tr

[

γ−1
k

]

3
∏

i=1

∣

∣

∣
2 sin πθk

i

∣

∣

∣
, (B.13)

M(k)
N=1 −−−→

l′→∞

∫ ∞

l′

dl

4π2

[

2Tr
[

γΩ′
k
γΩ′−T

k

]

3
∏

i=1

si

(

2 sin
(

πRk
i

))

]

, (B.14)

K(k)
0 +K(k)

2 −−−→
l′→∞

−
∫ ∞

l′

dl

4π2
4

[

3
∏

i=1

∣

∣

∣

∣

sin πRk
i

cos πRk
i

∣

∣

∣

∣

+(−1)M
3
∏

i=1

(−1)δi

∣

∣

∣

∣

sinπRk
i

cos πRk
i

∣

∣

∣

∣

δi
]

. (B.15)

where si = sgn
[

sin(2πRk
i )
]

. The (−1)M factor is discussed in footnote 5.

C Magnetised amplitudes

In this appendix we calculate the Annulus and Mobius strip magnetised amplitudes. We

begin with the annulus amplitudes. The Annulus amplitudes in the background of a mag-

12Since the Mobius amplitude is a function of −q the transformation needs to be done through a series

of transformations of the torus parameter 1/2 + it/2 = τ → − 1
τ
→ − 1

τ
+ 2 →

`

1
τ
− 2

´−1
= 2il − 1/2 [18].
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netic field is given by [7]

A(k)
N=1 = −

∫

dt

2t

1

(2π2t)

∑

α,β=0,1/2

ηαβ

2
Tr













γθk ⊗ γ−1
θk

i(β1 + β2)

2π2

ϑ

[

α

β

]

(

iǫt
2

)

ϑ

[

1/2

1/2

]

(

iǫt
2

)













×
3
∏

i=1

(

−2 sin πθk
i

)

ϑ

[

α

β + θk
i

]

ϑ

[

1/2

1/2 + θk
i

] . (C.1)

A(k)
N=2 = −

∫

dt

2t

1

(2π2t)

∑

α,β=0,1/2

ηαβ

2
(−1)2α Tr













γθk ⊗ γ−1
θk

i(β1 + β2)

2π2

ϑ

[

α

β

]

(

iǫt
2

)

ϑ

[

1/2

1/2

]

(

iǫt
2

)













×
ϑ

[

α

β

]

η3

2
∏

i=1

(

−2 sin πθk
i

)

ϑ

[

α

β + θk
i

]

ϑ

[

1/2

1/2 + θk
i

] . (C.2)

A(k)
N=4 = −

∫

dt

2t

1

(2π2t)

∑

α,β=0,1/2

ηαβ

2
Tr













i(β1 + β2)

2π2

ϑ

[

α

β

]

(

iǫt
2

)

ϑ

[

1/2

1/2

]

(

iǫt
2

)

























ϑ

[

α

β

]

η3













3

. (C.3)

The IR behaviour t → ∞ of the amplitudes is used in the main part of the paper to

calculate the β functions. These can be extracted to order B2 directly from the above

amplitudes using the methods given in [7, 18]. In this appendix we calculate the UV

behaviour. To do this we first transform to the closed string channel which gives

A(k)
N=1 =

∫

dl

4π2

∑

α,β=0,1/2

ηαβ

2
Tr













γθk ⊗ γ−1
θk

i(β1 + β2)

2π2

ϑ

[

β

−α

]

(ǫ | 4l)

ϑ

[

1/2

−1/2

]

(ǫ | 4l)













×
3
∏

i=1

(

−2 sin πθk
i

)

ϑ

[

β + θk
i

−α

]

(4l)

ϑ

[

1/2 + θk
i

−1/2

]

(4l)

, (C.4)
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A(k)
N=2 = i

∫

dl

4π2l

∑

α,β=0,1/2

ηαβ

2
(−1)2α Tr













γθk ⊗ γ−1
θk

i(β1 + β2)

2π2

ϑ

[

β

−α

]

(ǫ | 4l)

ϑ

[

1/2

−1/2

]

(ǫ | 4l)













×
ϑ

[

β

−α

]

η3

2
∏

i=1

(

−2 sin πθk
i

)

ϑ

[

β + θk
i

−α

]

(4l)

ϑ

[

1/2 + θk
i

−1/2

]

(4l)

e2πiθk
i (α−1/2) . (C.5)

A(k)
N=4 = −i

∫

dl

4π2

1

(2l)3

∑

α,β=0,1/2

ηαβ

2
Tr













i(β1 + β2)

2π2

ϑ

[

β

−α

]

(ǫ | 4l)

ϑ

[

1/2

1/2

]

(ǫ | 4l)

























ϑ

[

β

−α

]

η3













3

.

(C.6)

Now we can take the UV limit l → ∞ which gives

A(k)
N=1 −−−→

l′→∞
−
∫ ∞

l′

1

2

dl

4π2
Tr

[

γθk ⊗ γ−1
θk

i(β1 + β2)

2π2

(

i (cot (πǫ)−cosec (πǫ))

3
∏

i=1

∣

∣

∣
2 sin πθk

i

∣

∣

∣

+

3
∏

i=1

(

−2 sin πθk
i

)

)]

.

A(k)
N=2 −−−→

l′→∞
−
∫ ∞

l′

dl

4π2l
Tr

(

γθk ⊗ γ−1
θk

i(β1+β2)

2π2
i (cot (πǫ)−cosec (πǫ))

) 2
∏

i=1

∣

∣

∣2 sin πθk
i

∣

∣

∣ .

A(k)
N=4 −−−→

l′→∞
−
∫ ∞

l′

dl

4π2

1

(2l)3
Tr

[

i(β1 + β2)

2π2

(

−4icot (πǫ) +
i (cos (2πǫ) + 3)

sin (πǫ)

)]

, (C.7)

Note that these can be further simplified by using (β1 + β2) cot (πǫ) = 1 − β1β2. We can

expand these expressions in powers of the magnetic field B which gives up to order B4 the

expressions

A(k)
N=1 −−−→

l′→∞
−1

8

∫ ∞

l′

dl

(4π2)2
Tr

[

γθk ⊗ γ−1
θk

(

4 (β1 + β2)
3
∏

i=1

(

−2 sin πθk
i

)

+
(

4 (β1+β2)
2−
(

β2
1−β2

2

)2
)

3
∏

i=1

∣

∣

∣
2 sin πθk

i

∣

∣

∣

)]

,

A(k)
N=2 −−−→

l′→∞
−1

2

∫ ∞

l′

dl

(4π2)2
1

(2l)
Tr
[

γθk ⊗ γ−1
θk

(

4 (β1+β2)
2 −

(

β2
1−β2

2

)2
)]

2
∏

i=1

∣

∣

∣
2 sin πθk

i

∣

∣

∣
,

A(k)
N=4 −−−→

l′→∞

∫ ∞

l′

dl

(4π2)2
1

(2l)3
Tr
[

(β1 + β2)
4
]

. (C.8)

Now we repeat the same calculations for the N = 1 and N = 2 magnetised Mobius
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strip amplitudes. In the open string loop channel we have

M(k)
N=1 = 2

∫ ∞

0

dt

2t

1

(2π2t)

∑

α,β=0,1/2

ηαβ

2
Tr











i

2π2
βγΩ′

k
γ−T
Ω′

k

ϑ

[

α

β

]

(

iǫt
2

)

ϑ

[

1/2

1/2

]

(

iǫt
2

)











×
3
∏

i=1

(

−2 sin
(

πRk
i

))

ϑ

[

α

β + Rk
i

]

ϑ

[

1/2

1/2 + Rk
i

] .

M(k)
N=2 = 2

∫

dt

2t

1

(2π2t)

∑

α,β=0,1/2

ηαβ

2
(−1)

2α
Tr











i

2π2
βγΩ′

k
γ−T
Ω′

k

ϑ

[

α

β

]

(

iǫt
2

)

ϑ

[

1/2

1/2

]

(

iǫt
2

)











×
ϑ

[

α

β

]

η3

2
∏

i=1

(

−2 sinπRk
i

)

ϑ

[

α

β + Rk
i

]

ϑ

[

1/2

1/2 + Rk
i

] . (C.9)

Again the IR behaviour can be extracted as for the Annulus. In the main section we are
interested in the UV behaviour for the N = 1 sectors. Transforming to the tree channel
we find

M(k)
N=1 =−8

∫

dl

4π2

∑

α,β=0,1/2

ηαβ

2
Tr











i

2π2
βγΩ′

k
γΩ′−T

k

ϑ

[

α

β

]

(

ǫ
2

)

ϑ

[

1/2

1/2

]

(

ǫ
2

)











3
∏

i=1

(

−2 sin
(

πRk
i

))

ϑ

[

α+2Rk
i

β+Rk
i

]

ϑ

[

1/2+2Rk
i

1/2+Rk
i

] .

(C.10)

Taking the UV limit we get

M(k)
N=1 −−−→

l′→∞
4

∫ ∞

l′

dl

4π2
Tr

[

i

2π2
βγΩ′

k
γΩ′−T

k

(

1 − i

(

cot (πǫ/2) − 1

sin (πǫ/2)

) 3
∏

i=1

si

)]

×
3
∏

i=1

(

−2 sin
(

πRk
i

))

. (C.11)

We can expand this as

M(k)
N=1 −−−→

l′→∞
−4

∫ ∞

l′

dl

(4π2)2
Tr

[(

β2 +
1

4
β4

)

γΩ′
k
γΩ′−T

k

] 3
∏

i=1

si

(

−2 sin
(

πRk
i

))

. (C.12)

D Chiral vs linear multiplets at 1-loop

In this appendix we discuss the dualisation of linear multiplets to chiral multiplets in

supergravity. The analysis follows that presented in [19, 21] but applied to the local IIB

models studied in this paper. For more details regarding the supergravity constructions

we refer to [21].

– 36 –



J
H
E
P
0
9
(
2
0
0
9
)
0
1
9

The linear multiplet L is defined by the constraint

(

D2 − 8R̄
)

L =
(

D̄2 − 8R
)

L = 0 , (D.1)

where D is the superspace covariant derivative and R is the chiral superfield containing

the curvature scalar. The bosonic components are a real scalar, which we denote again by

L, and a real two-form C̃2. We can couple L to a Yang-Mills (YM) gauge field A with field

strength F through a Green-Schwarz coupling C̃2 ∧F . This implies that the field strength

of C̃2 is modified in order to be gauge invariant under the YM gauge transformation

F̃ = dC̃2 + kΩ , (D.2)

where k is a constant and Ω is the Chern-Simons form Ω = Tr
(

A∧ dA + 2
3A ∧A ∧A

)

.

This modifies the Linear multiplet constraints (D.1) to

(

D2 − 8R̄ − 2kTrW2
)

L =
(

D̄2 − 8R − 2kTrW̄2
)

L = 0 , (D.3)

with TrW2 = 1
2

(

D̄2 − 8R
)

Ω the usual YM field strength. The supergravity action for

single linear multiplet L and chiral multiplets (collectively denoted as) T is given by

S = −3

∫

EF
(

T, T̄ , L
)

+

{

1

2

∫

E

R
eK/2W (T ) + hc

}

+ . . . , (D.4)

where E is the super-vielbein, W the superpotential, and K
(

T, T̄ , L
)

is the Kahler poten-

tial. The function F
(

T, T̄ , L
)

is called the subsidiary function and is related to the Kahler

potential through

F − LFL = 1 − 1

3
LKL , (D.5)

where subscripts denote derivatives. Equation (D.5) comes from the fact that in the lin-

ear multiplet formalism integrating over the superdeterminant gives a non-canonically

normalised Einstein term and (D.5) is the correct normalisation constraint. The con-

straint (D.5) fixes

F
(

T, T̄ , L
)

= 1 + L∆
(

T, T̄
)

+
L

3

∫

dλ

λ
Kλ

(

T, T̄ , λ
)

, (D.6)

with λ a dummy variable for L. ∆
(

T, T̄
)

is call the Linear potential and forms part of the

gauge coupling of L to A. which is given by [21]

3k

(

F
(

T, T̄ , L
)

− 1

L

)

TrF2 . (D.7)

In our case ∆
(

T, T̄
)

will encode the 1-loop correction to the gauge coupling associated to

the field L.

We wish to dualise the linear multiplet L to a chiral multiplet M (which has a propa-

gating bosonic component of single complex scalar field M). The ReM is dual to the scalar

L and ImM is dual to C̃2. To do this we introduce the coupling to the action

S = −3

∫

E
[

F
(

T, T̄ , L
)

+ (L − kΩ)
(

M + M̄
)]

+ . . . . (D.8)
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Then we find the equation of motion for L which read13

(

M + M̄
)

(

1 − 1

3
LKL

)

=
1

3
FKL − FL . (D.9)

This equation can be used in principle to solve for L
(

M + M̄, T, T̄
)

and write the action

using only chiral superfields. Now using (D.5) and (D.9) we find

F
(

T, T̄ , L
)

+ L
(

M + M̄
)

= 1 . (D.10)

Substituting this into the action (D.8) gives

S = −3

∫

E
[

1 − kΩ
(

M + M̄
)]

+ . . .

= −3

∫

E −
{

3

8
k

∫

E

R
M
(

D̄2 − 8R
)

Ω + hc

}

+ . . .

= −3

∫

E −
{

3

4
k

∫

E

R
MTrW2 + hc

}

+ . . . . (D.11)

Here in the first step the derivative terms vanish upon integration by parts and we used

the expression below (D.3) in the second step. This implies that in the chiral multiplet

formalism the familiar holomorphic gauge kinetic function f(M) takes the form

f = −6kM . (D.12)

Equivalently this can be derived by simply substituting (D.10) into (D.7) and using holo-

morphy. This should be compared with what is denoted the tree-level gauge kinetic function

in the main text (1.3). We see that they match and so what remains is to determine the

precise relationship between ReM and L.

D.1 Application to local IIB models

In this subsection we apply the results derived in the previous section to the local IIB

models studied in the main text. Of course the analysis of the previous section is vastly

over simplified since there are many fields in a concrete construction but the key properties

can be deduced considering only one field which is what we do in this subsection.

We begin by specifying the Kahler potential which in local models takes the form

K = −2lnV
(

T, T̄
)

+ V
(

T, T̄
)

L2 + K0 (U,S) , (D.13)

where U and S are the complex-structure and dilaton fields respectively and V
(

T, T̄
)

denotes the CY volume as a function of the four-cycle volumes T .14 This Kahler potential,

using (D.6), gives a subsidiary function of

F = 1 + L∆ +
2V
3

L2 . (D.14)

13Note that δLE = − 1
3
EKLδL and δLΩ = 1

3
ΩKLδL.

14The factor of V in front of the L2 term is justified from the fact that after dualisation to the chiral

multiplet, at tree level, this Kahler potential term takes the form K
`

M, M̄
´

=
9(M+M̄)2

4V
which is the form

advocated in [29] for the blow-up modulus.
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Then using (D.13) and (D.10) gives

ReM = −1

2

(

2V
3

L + ∆

)

. (D.15)

This should be compared with (4.4) and we see that they match up to a field rescaling

m = −V
3 L. Using (D.12) we can also match the field coupling −6k = s.

Finally we need to determine the nature of ∆. From (D.14) we see that at the orbifold

limit L = 0 the gauge coupling (D.7) takes the form

1

g2
= 3k∆ . (D.16)

This shows that the field redefinition is given by the 1-loop correction to the gauge coupling

as required in the main text.

E Some conventions and formulae

We here collate definitions and identities of the various Jacobi-ϑ functions. We write

q = e−πt throughout these formulae. The eta function is defined by

η(t) = q1/24
∞
∏

n=1

(1 − qn). (E.1)

The Jacobi ϑ-function with general characterstic is defined as

ϑ

[

α

β

]

(z|t) =
∑

n∈Z

q(n+α)2/2e2πi(z+β)(n+α). (E.2)

Here z = 0 unless specified. The ϑ functions are manifestly invariant under α → α + Z. A

useful expansion valid for α ∈
(

−1
2 , 1

2

]

is

ϑ

[

α

β

]

η
(t) = e2πiαβq

α2

2
− 1

24

∞
∏

n=1

(

1 + e2πiβqn− 1
2
+α
)(

1 + e−2πiβqn− 1
2
−α
)

. (E.3)

For the four special ϑ-functions, we have

ϑ1(z|t) ≡ ϑ

[

1
2
1
2

]

(z|t) = 2q1/8 sin πz

∞
∏

n=1

(1 − qn)(1 − e2πizqn)(1 − e−2πizqn). (E.4)

ϑ2(z|t) ≡ ϑ

[

1
2

0

]

(z|t) = 2q1/8 cos πz
∞
∏

n=1

(1 − qn)(1 + e2πizqn)(1 + e−2πizqn). (E.5)

ϑ3(z|t) ≡ ϑ

[

0

0

]

(z|t) =

∞
∏

n=1

(1 − qn)
(

1 + e2πizqn− 1
2

)(

1 + e−2πizqn− 1
2

)

. (E.6)

ϑ4(z|t) ≡ ϑ

[

0
1
2

]

(z|t) =

∞
∏

n=1

(1 − qn)
(

1 − e2πizqn− 1
2

)(

1 − e−2πizqn− 1
2

)

. (E.7)
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The functions transform as (from [18])

ϑ

[

α

β

]

(z|τ) = e−2πiαβ− iπz2

τ

√

i

τ
ϑ

[

−β

α

]

(

z

τ

∣

∣

∣− 1

τ

)

, (E.8)

ϑ

[

α

β

]

(z|τ) = eπiα(α−1)ϑ

[

α

β − α + 1/2

]

(z|τ + 1) . (E.9)
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